An atomistic level study of a single monomer of polyamine interacting with water molecules and hydroxide anions (OH – ) was carried out to investigate the role of the polyamine structure in the hydrated morphology of anion exchange membranes (AEMs) for alkaline fuel cells and its influence on ionic conductivity and chemical stability. DFT calculations were performed to find the ground state of the system, studying the interactions of the solvent species with three different regions of the polymer—the amine functional group, the backbone, and the carbonyl group. The hydrophilic/hydrophobic behavior of each segment was determined, with calculated binding energies and Bader charge analysis providing a more quantitative analysis of the interactions and activation and reaction energies computed to investigate the chemical degradation mechanism. The results show the tendency of both OH – and water molecules to form water clusters in the proximity of the ionized amine group. As such, these regions constitute the preferential pathway for ionic conductivity. Besides, the essential role of the water content is pointed out, not only to enhance conductivity but also to reduce degradation in an alkaline environment. The present work provides a baseline to assess the impact of polymer chemistry on the ionic conductivity of the membrane and acts as the first step for the development of high-performance AEMs and for an improvement of the overall performance of the fuel cell.
Several modified terpolymer polyketones (MPK) with N-substituted pyrrole moieties in the main chain and quaternized amine in the side group were synthesized for use as anion exchange membranes for fuel cells. The moieties were carried by SiO2 nanoparticles through surface functionalization (Si–N), which were added to the membranes to enhance their overall properties. On increasing the amount of modified silica from 10% to 60% wt/of MPK, there was an increase in Si–N and a corresponding threefold increase in the hydroxide conductivity of the membrane. The MPK–SiN (60%) exhibited a superior ionic conductivity of 1.05 × 10−1 S.cm−1 at 120 °C, a high mechanical stability, with a tensile strength of 46 MPa at 80 °C. In strongly alkaline conditions (1 M KOH, 216 h at 80 °C), the membranes maintained about 70% of the conductivity measured in a usual environment. Fuel cell performance at 80 °C showed a peak power density of 133 mW·cm−2, indicating that using surface-functionalized SiO2 is a simple and effective way to enhance the overall performance of anion exchange membranes in fuel cell applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.