The cellular location and rhythmic expression of Period 1 (Per1) circadian clock gene were examined in the retina of a Per1::GFP transgenic mouse. Mouse Per1 (mPer1) RNA was localized to inner nuclear and ganglion cell layers but was absent in the outer nuclear (photoreceptor) layer. Green fluorescent protein (GFP), which was shown to colocalize with PER1 protein, was found in a few subtypes of amacrine neuron, including those containing tyrosine hydroxylase, calbindin, and calretinin, but not in cholinergic amacrine cells. A small subset of ganglion cells also contained GFP immunoreactivity (GFP-IR), but the melanopsin-containing subtype, which projects to the suprachiasmatic nuclei (SCN), lacked GFP-IR. Although the intensity of GFP-IR varied among the populations of amacrine cells at each time point that was examined, both diurnal and circadian rhythms were found for the fraction of neurons showing strong GFP-IR, with peak expression between Zeitgeber/circadian (ZT/CT) times 10 and 14. In SCNs that were examined in the same mice used for the retinal measures, the peak in GFP-IR also occurred at approximately ZT/CT 10. Our results are the first to demonstrate a circadian rhythm of a biological clock component in identified neurons of a mammalian retina.
We studied in vivo activity-dependent phosphorylation of tyrosine hydroxylase (TH) in dopaminergic (DA) neurons of the rat retina. TH phosphorylation (TH-P) was evaluated by immunocytochemistry, using antibodies specific for each of three regulated phosphorylation sites. TH synthesis rate was measured by dihydroxyphenylalanine (DOPA) accumulation in the presence of NSD-1015, an inhibitor of aromatic amino acid decarboxylase. TH-P was increased markedly by light or after intraocular injection of GABA A and glycine inhibitors. All three phosphospecific antibodies responded similarly to test drugs or light. A 30 min exposure to light increased DOPA accumulation by threefold over that seen after 30 min in darkness. Immunostaining to an anti-panNa channel antibody was found in all parts of the DA neuron. TTX blocked TH-P induced by light or GABA/glycine inhibitors but only in varicosities of the DA axon plexus, not in perikarya or dendrites. Veratridine increased TH-P in all parts of the DA neuron. The distribution of the monoamine vesicular transporter 2 was shown by immunocytochemistry to reside in varicosities of the DA plexus but not in dendrites, indicating that the varicosities are sites of dopamine release. Collectively, these data indicate that, in the retina, dopamine synthesis in varicosities is affected by the spiking activity of retinal neurons, possibly including that of the DA neurons themselves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.