While silicon-based negative electrode materials have been extensively studied, to develop high capacity lithium-ion batteries, implementing a large-scale production method that can be easily transferred to industy, has been a crucial challenge. Here, a scalable wet-jet milling method was developed to prepare a silicon-graphene hybrid material to be used as negative electrode in lithium-ion batteries. This synthesized composite, when used as an anode in lithium cells, demonstrated high Li ion storage capacity, long cycling stability and high-rate capability. In particular, the electrode exhibited a reversible discharge capacity exceeding 1763 mAh g-1 after 450 cycles with a capacity retention of 98% and a coulombic efficiency of 99.85% (with a current density of 358 mA g-1). This significantly supersedes the performance of a Si-dominant electrode structures. The capacity fade rate after 450 cycles was only 0.005% per cycle in the 0.05-1 V range. This superior electrochemical performance is ascribed to the highly layered, silicon-graphene porous structure, as investigated via focused ion beam in conjunction with scanning electron microscopy (FIB-SEM) tomography. The hybrid electrode could retain 89% of its porosity (under a current density of 358 mA g-1) after 200 cycles compared with only 35% in a Si-dominant electrode. Moreover, this morphology can not only accommodate the large volume strains from active silicon particles, but also maintains robust electrical connectivity. This confers faster transportation of electrons and ions with significant permeation of electrolyte within the electrode. Physicochemical characterisations were performed to further correlate the electrochemical performance with the microstructural dynamics. The excellent performance of the hybrid material along with the scalability of the synthesizing process is a step forward to realize high capacity/energy density lithium-ion batteries for multiple device applications.
Low-cost and environmentally friendly materials from leather manufacturing waste are investigated for application in Electrochemical Energy Storage Devices (EESDs). Metals-free leather shaving waste (LSW) was employed as precursor to design...
Recent studies on anatase TiO2 have demonstrated its capability of performing as anode material for sodium-ion batteries (SIBs) even though, due to a poor conductivity, realistic applications have not been...
An important segment of the future renewable energy economy is the implementation of novel energy generation systems. Such electrochemical systems are solid oxide fuel cells, which have the advantage of direct conversion of the chemical energy stored in the fuel to electrical energy with high efficiency. Improving the performance and lowering the cost of solid oxide fuel cells (SOFCs) are strongly dependent on finding commercially viable methods for nano-functionalization of their electrodes via infiltration. Inkjet printing technology was proven to be a feasible method providing scalability and high-resolution ink delivery. LaxSr1−xCoyFe1−yO3−δ cathodes were modified using inkjet printing for infiltration with two different materials: Gd-doped ceria (CGO) commonly used as ion-conductor and La0.6Sr0.4CoO3–δ (LCO) commonly used as a mixed ionic electronic conductor. As-modified surface structures promoted the extension of the three-phase boundary (TPB) and enhanced the mechanisms of the oxygen reduction reaction. Electrochemical impedance measurements revealed significantly lowered polarization resistances (between 2.7 and 3.7 times) and maximum power output enhancement of 24% for CGO infiltrated electrodes and 40% for LCO infiltrated electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.