Glycogen synthase kinase-3 (GSK3) may be the busiest kinase in most cells, with over 100 known substrates to deal with. How does GSK3 maintain control to selectively phosphorylate each substrate, and why was it evolutionarily favorable for GSK3 to assume such a large responsibility? GSK3 must be particularly adaptable for incorporating new substrates into its repertoire, and we discuss the distinct properties of GSK3 that may contribute to its capacity to fulfill its roles in multiple signaling pathways. The mechanisms regulating GSK3 (predominantly post-translational modifications, substrate priming, cellular trafficking, protein complexes) have been reviewed previously, so here we focus on newly identified complexities in these mechanisms, how each of these regulatory mechanism contributes to the ability of GSK3 to select which substrates to phosphorylate, and how these mechanisms may have contributed to its adaptability as new substrates evolved. The current understanding of the mechanisms regulating GSK3 is reviewed, as are emerging topics in the actions of GSK3, particularly its interactions with receptors and receptor-coupled signal transduction events, and differential actions and regulation of the two GSK3 isoforms, GSK3α and GSK3β. Another remarkable characteristic of GSK3 is its involvement in many prevalent disorders, including psychiatric and neurological diseases, inflammatory diseases, cancer, and others. We address the feasibility of targeting GSK3 therapeutically, and provide an update of its involvement in the etiology and treatment of several disorders.
Depression represents the number one cause of disability worldwide and is often fatal. Inflammatory processes have been implicated in the pathophysiology of depression. It is now well established that dysregulation of both the innate and adaptive immune systems occur in depressed patients and hinder favorable prognosis, including antidepressant responses. In this review, we describe how the immune system regulates mood and the potential causes of the dysregulated inflammatory responses in depressed patients. However, the proportion of never-treated major depressive disorder (MDD) patients who exhibit inflammation remains to be clarified, as the heterogeneity in inflammation findings may stem in part from examining MDD patients with varied interventions. Inflammation is likely a critical disease modifier, promoting susceptibility to depression. Controlling inflammation might provide an overall therapeutic benefit, regardless of whether it is secondary to early life trauma, a more acute stress response, microbiome alterations, a genetic diathesis, or a combination of these and other factors.
Deciphering what governs inflammation and its effects on tissues is vital for understanding many pathologies. The recent discovery that glycogen synthase kinase-3 (GSK3) promotes inflammation reveals a new component of its well-documented actions in several prevalent diseases which involve inflammation, including mood disorders, Alzheimer's disease, diabetes, and cancer. Involvement in such disparate conditions stems from the widespread influences of GSK3 on many cellular functions, with this review focusing on its regulation of inflammatory processes. GSK3 promotes the production of inflammatory molecules and cell migration, which together make GSK3 a powerful regulator of inflammation, while GSK3 inhibition provides protection from inflammatory conditions in animal models. The involvement of GSK3 and inflammation in these diseases are highlighted. Thus, GSK3 may contribute not only to primary pathologies in these diseases, but also to the associated inflammation, suggesting that GSK3 inhibitors may have multiple effects influencing these conditions.
Few things can be considered to be more important to a cell than its threshold for apoptotic cell death, which can be modulated up or down, but rarely in both directions, by a single enzyme. Therefore, it came as quite a surprise to find that one enzyme, glycogen synthase kinase-3 (GSK3), has the perplexing capacity to either increase or decrease the apoptotic threshold. These apparently paradoxical effects now are known to be due to GSK3 oppositely regulating the two major apoptotic signaling pathways. GSK3 promotes cell death caused by the mitochondrial intrinsic apoptotic pathway, but inhibits the death receptor-mediated extrinsic apoptotic signaling pathway. Intrinsic apoptotic signaling, activated by cell damage, is promoted by GSK3 by facilitation of signals that cause disruption of mitochondria and by regulation of transcription factors that control the expression of anti- or pro-apoptotic proteins. The extrinsic apoptotic pathway entails extracellular ligands stimulating cell-surface death receptors that initiate apoptosis by activating caspase-8, and this early step in extrinsic apoptotic signaling is inhibited by GSK3. Thus, GSK3 modulates key steps in each of the two major pathways of apoptosis, but in opposite directions. Consequently, inhibitors of GSK3 provide protection from intrinsic apoptosis signaling but potentiate extrinsic apoptosis signaling. Studies of this eccentric ability of GSK3 to oppositely influence two types of apoptotic signaling have shed light on important regulatory mechanisms in apoptosis and provide the foundation for designing the rational use of GSK3 inhibitors for therapeutic interventions.
In just a few years, glycogen synthase kinase-3 (GSK3) has transformed from an obscure enzyme seldom encountered in the immune literature to one implicated in an improbably large number of roles. GSK3 is a crucial regulator of the balance between pro-and anti-inflammatory cytokine production in both the periphery and the central nervous system, endowing GSK3 inhibitors such as lithium with the capacity to diminish inflammation. T cell proliferation, differentiation, and survival are influenced by GSK3. Many effects stem from GSK3 regulation of critical transcription factors, such as NF-κB, NFAT and STATs. These discoveries led to the rapid application of GSK3 inhibitors to animal models of sepsis, arthritis, colitis, multiple sclerosis, and others that demonstrated their potential for therapeutic interventions. Introductory overviewThe innate and adaptive immune systems are crucial for sustaining life but can also contribute to a host of debilitating diseases. Investigators have wrestled with numerous strategies to maintain or restore a healthy balance in the activities of these systems. During the last few years, the ubiquitous serine/threonine kinase glycogen synthase kinase-3 (GSK3) was identified as a regulator of many components of the immune system, suggesting it may be a plausible therapeutic target in inflammatory and autoimmune diseases. Although unobtrusively named due to its initial identification as an enzyme phosphorylating glycogen synthase, GSK3 has since been found to be a point of convergence of many signaling pathways and to regulate many cellular functions through its capacity to phosphorylate over 50 substrates [1]. The complexity of actions of GSK3 is mirrored by the complex mechanisms that regulate its actions (Box 1). Ironically, GSK3 is inhibited by the cation lithium, the simplest of all drugs used therapeutically in humans [2]. Lithium is the classic therapeutic treatment for bipolar disorder (previously called manic-depression), and exerts a broad range of effects on immune cells (Box 2). The complexities of GSK3 regulation offer multiple strategies to control GSK3, for example by regulating individual kinases that phosphorylate GSK3 or the association of proteins with GSK3 in complexes that are specific for individual signaling pathways, and the availability of an inhibitor approved for human use promises rapid application for new intervention objectives. Here we review current knowledge about the roles of GSK3 in innate and adaptive immunity and summarize preliminary animal testing using GSK3 inhibitors in animal models of a rapidly expanding number of diseases. GSK3 regulates innate immunityThe crucial role of GSK3 in inflammation was established by the finding that active GSK3 is necessary for pro-inflammatory cytokine production following stimulation of TLRs [3]. For example, GSK3 deficiency induced pharmacologically with lithium or other GSK3 inhibitors or by molecular manipulations reduced by 67-90% the production of proinflammatory interleukin-6 (IL-6), IL-1β, IL-12p40...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.