Two pseudohalide thiocyanate ions (SCN(-) ) have been used to replace two iodides in CH3 NH3 PbI3 , and the resulting perovskite material was used as the active material in solar cells. In accelerated stability tests, the CH3 NH3 Pb(SCN)2 I perovskite films were shown to be superior to the conventional CH3 NH3 PbI3 films as no significant degradation was observed after the film had been exposed to air with a relative humidity of 95 % for over four hours, whereas CH3 NH3 PbI3 films degraded in less than 1.5 hours. Solar cells based on CH3 NH3 Pb(SCN)2 I thin films exhibited an efficiency of 8.3 %, which is comparable to that of CH3 NH3 PbI3 based cells fabricated in the same way.
Two pseudohalide thiocyanate ions (SCN−) have been used to replace two iodides in CH3NH3PbI3, and the resulting perovskite material was used as the active material in solar cells. In accelerated stability tests, the CH3NH3Pb(SCN)2I perovskite films were shown to be superior to the conventional CH3NH3PbI3 films as no significant degradation was observed after the film had been exposed to air with a relative humidity of 95 % for over four hours, whereas CH3NH3PbI3 films degraded in less than 1.5 hours. Solar cells based on CH3NH3Pb(SCN)2I thin films exhibited an efficiency of 8.3 %, which is comparable to that of CH3NH3PbI3 based cells fabricated in the same way.
Thymine cation radicals were generated in the gas phase by collision-induced intramolecular electron transfer in [Cu(2,2':6,2″-terpyridine)(thymine)] complexes and characterized by ion-molecule reactions, UV-vis photodissociation action spectroscopy, and ab initio and density functional theory calculations. The experimental results indicated the formation of a tautomer mixture consisting chiefly (77%) of noncanonical tautomers with a C-7-H group. The canonical 2,4-dioxo-N-1,N-3-H isomer was formed as a minor component at ca. 23%. Ab initio CCSD(T) calculations indicated that the canonical [thymine] ion was not the lowest-energy isomer. This contrasts with neutral thymine, for which the canonical isomer is the lowest-energy structure. Exothermic unimolecular isomerization by a methyl hydrogen migration in the canonical [thymine] ion required a low energy barrier, forming a C-7-H,O-4-H isomer. Noncanonical thymine tautomers with a C-7-H group were also identified by calculations as low-energy isomers of 2'-deoxythymidine phosphate cation radicals. The relative energies of thymidine ion isomers were sensitive to the computational method used and were affected by solvation. The noncanonical [thymine] ions have extremely low adiabatic recombination energies (RE < 5.9 eV), making them potential ionization hole traps in ionized nucleic acids.
A new decarbonylation reaction is observed for [(K-acetate)Pd(K-diphosphine)] complexes. Gas-phase IR experiments identify the product as [CHPd(OP(Ph)CHPPh)]. DFT calculations uncovered a plausible mechanism involving O atom abstraction by the diphosphine ligand within the coordination sphere to yield the acetyl complex, [CHCOPd(OP(Ph)CHPPh)], which then undergoes decarbonylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.