A finite-difference time-domain method is developed for studying the plasmon enhancement of light absorption from vertically aligned GaAs nanowire arrays decorated with Au nanoparticles. Vertically aligned GaAs nanowires with a length of 1 µm, a diameter of 100 nm and a periodicity of 165–500 nm are functionalized with Au nanoparticles with a diameter between 30 and 60 nm decorated in the sidewall of the nanowires. The results show that the metal nanoparticles can improve the absorption efficiency through their plasmonic resonances, most significantly within the near-bandgap edge of GaAs. By optimizing the nanoparticle parameters, an absorption enhancement of almost 35% at 800 nm wavelength is achieved. The latter increases the chance of generating more electron–hole pairs, which leads to an increase in the overall efficiency of the solar cell. The proposed structure emerges as a promising material combination for high-efficiency solar cells.
In this study, we have prepared cobalt selenide (CoSe2) due to its useful aspects from a catalysis point of view such as abundant active sites from Se edges, and significant stability in alkaline conditions.
A B S T R A C TZinc oxide (ZnO) nanostructures are widely investigated for photocatalytic applications but the functional properties are limited by the fast carrier recombination rate, which is an intrinsic property of ZnO. To optimize the recombination rate of ZnO, a study is carried out in which it is covered with Ni-Fe layered double hydroxides and synergistic effects are created which boosted the photocatalytic activity of ZnO. The nanostructured materials are synthesized by the low temperature aqueous chemical growth and electrodeposition methods. These nanostructures are characterized by scanning electron microscopy (SEM) and powder X-ray diffraction (XRD) technique. SEM study has revealed a Ni-Fe LDH coated ZnO NRs. The powder XRD has showed a cubic phase of the Ni-Fe layered double hydroxide on the ZnO NRs having an excellent crystalline quality. The optical characterization has shown low scattering of light for the Ni-Fe LDH coated ZnO NRs sample. The sample prepared with deposition time of 25 s showed excellent photochemical water splitting properties compared to counter photoanodes in alkaline media. The photo response was highly stable and fast. The incident photon to current conversion efficiency for the photo-anode of Ni-Fe(LDHs)/ZnO over 25 s was 82% at a maximum absorption of 380 nm compared to the pristine ZnO NRs which has 70% at the same wavelength. This study is providing a simple, cost effective, earth abundant and environment friendly methodology for the fabrication of photo-anodes for diverse applications specifically water oxidation and solar radiation driven water splitting.
Highly efficient photoelectrochemical (PEC) water oxidation under solar visible light is crucial for water splitting to produce hydrogen as a source of sustainable energy. Particularly, silver-based nanomaterials are important for PEC performance due to their surface plasmon resonance which can enhance the photoelectrochemical efficiency. However, the PEC of ZnO/Ag2WO4/AgBr with enhanced visible-light water oxidation has not been studied so far. Herein, we present a novel photoelectrodes based on ZnO/Ag2WO4/AgBr nanorods (NRs) for PEC application, which is prepared by the low-temperature chemical growth method and then by successive ionic layer adsorption and reaction (SILAR) method. The synthesized photoelectrodes were investigated by several characterization techniques, emphasizing a successful synthesis of the ZnO/Ag2WO4/AgBr heterostructure NRs with excellent photocatalysis performance compared to pure ZnO NRs photoelectrode. The significantly enhanced PEC was due to improved photogeneration and transportation of electrons in the heterojunction due to the synergistic effect of the heterostructure. This study is significant for basic understanding of the photocatalytic mechanism of the heterojunction which can prompt further development of novel efficient photoelectrochemical-catalytic materials.
Graphic Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.