Noninvasive measurement of the distribution and oxygenation state of hemoglobin (Hb) inside the tissue is strongly required to analyze the tumor-associated vasculatures. We developed a photoacoustic imaging (PAI) system with a hemispherical-shaped detector array (HDA). Here, we show that PAI system with HDA revealed finer vasculature, more detailed blood-vessel branching structures, and more detailed morphological vessel characteristics compared with MRI by the use of breast shape deformation of MRI to PAI and their fused image. Morphologically abnormal peritumoral blood vessel features, including centripetal photoacoustic signals and disruption or narrowing of vessel signals, were observed and intratumoral signals were detected by PAI in breast cancer tissues as a result of the clinical study of 22 malignant cases. Interestingly, it was also possible to analyze anticancer treatment-driven changes in vascular morphological features and function, such as improvement of intratumoral blood perfusion and relevant changes in intravascular hemoglobin saturation of oxygen. This clinical study indicated that PAI appears to be a promising tool for noninvasive analysis of human blood vessels and may contribute to improve cancer diagnosis.
Abstract. We have constructed a prototype photoacoustic mammography system (PAM-02) capable of simultaneously acquiring photoacoustic (PA) and ultrasound (US) images. Each PA, US, and fused PA/US image can be acquired over a wide area of the breast using the scanning module of a US transducer, a PA detector, and optical prisms. The resolution of the PA images exhibits improvement from 2 to 1 mm compared to images acquired using our previous prototype. The maximum scan area of PAM-02 is 90 mm along the horizontal axis and 150 mm along the vertical axis. In a phantom experiment, the available depth was at least 45 mm. A representative example of the application of the PAM-02 prototype in clinical research at Kyoto University is presented and shows S-factor images, which are considered an approximation parameter related to hemoglobin saturation of tumor-related blood vessels. We confirmed the applicability of the system for anatomical and biological research. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
The development of new blood vessels is a crucial step in breast cancer growth, progression and dissemination, making it a promising therapeutic target. Breast cancer has a heterogeneous nature and the diversity of responsible angiogenic pathways between different tumors has been studied for many years. Inhibiting different targets in these pathways has been under investigation in preclinical and clinical studies for more than decades, among which antibody against vascular endothelial growth factor is the most studied. However, the clinical impact from antiangiogenic treatment alone or in combination with standard chemotherapeutic regimens has been relatively small till today. In this review, we summarize the most clinically relevant data from breast cancer treatment clinical trials and discuss safety and efficacy of common antiangiogenic therapies as well as biological predictive markers.
Photoacoustic tomography is a recently developed imaging modality that can provide high spatial-resolution images of hemoglobin distribution in tissues such as the breast. Because breast cancer is an angiogenesis-dependent type of malignancy, we evaluated the clinical acceptability of breast tissue images produced using our first prototype photoacoustic mammography (PAM) system in patients with known cancer. Post-excisionally, histological sections of the tumors were stained immunohistochemically (IHC) for CD31 (an endothelial marker) and carbonic anhydrase IX (CAIX) (a marker of hypoxia). Whole-slide scanning and image analyses were used to evaluate the tumor microvessel distribution pattern and to calculate the total vascular perimeter (TVP)/area for each lesion. In this clinical study, 42 lesions were primarily scanned using PAM preoperatively, three of which were reported to be benign and were excluded from statistical analysis. Images were produced for 29 out of 39 cancers (visibility rate = 74.4%) at the median depth of 26.5 (3.25–51.2) mm. Age, menopausal status, body mass index, history of neoadjuvant treatment, clinical stage and histological tumor angiogenesis markers did not seem to affect the visibility. The oxygen saturation level in all of the measured lesions was lower than in the subcutaneous counterpart vessels (Wilcoxon test, p value<0.001), as well as in the counterpart contralateral normal breast region of interest (ROI) (Wilcoxon test, p value = 0.001). Although the oxygen saturation level was not statistically significant between CAIX-positive vs. -negative cases, lesional TVP/area showed a positive correlation with the oxygen saturation level only in the group that had received therapy before PAM. In conclusion, the vascular and oxygenation data obtained by PAM have great potential for identifying functional features of breast tumors.
This randomized, multicenter study compared the efficacy of docetaxel with or without capecitabine following fluorouracil/epirubicin/cyclophosphamide (FEC) therapy in operable breast cancer and investigated the role of Ki67 as a predictive biomarker. Patients were randomized to 4 cycles of docetaxel/capecitabine (docetaxel: 75 mg/m2 on day 1; capecitabine: 1,650 mg/m2 on days 1–14 every 3 weeks) or docetaxel alone (75 mg/m2 on day 1 every 3 weeks) after completion of 4 cycles of FEC (5-fluorouracil 500 mg/m2, epirubicin 100 mg/m2 and cyclophosphamide 500 mg/m2 on day 1 every 3 weeks). The primary endpoint was the pathological complete response (pCR) rate. Predictive factor analysis was conducted using clinicopathological markers, including hormone receptors and Ki67 labeling index (Ki67LI). A total of 477 patients were randomized; the overall response in the docetaxel/capecitabine and docetaxel groups was 88.3 and 87.4 %, respectively. There were no significant differences in the pCR rate (docetaxel/capecitabine: 23 %; docetaxel: 24 %; p = 0.748), disease-free survival, or overall survival. However, patients with mid-range Ki67LI (10–20 %) showed a trend towards improved pCR rate with docetaxel/capecitabine compared to docetaxel alone. Furthermore, multivariate logistic regression analysis showed pre-treatment Ki67LI (odds ratio 1.031; 95 % CI 1.014–1.048; p = 0.0004) to be a significant predictor of pCR in this neoadjuvant treatment setting. Docetaxel/capecitabine (after 4 cycles of FEC) did not generate significant improvement in pCR compared to docetaxel alone. However, exploratory analyses suggested that assessment of pre-treatment Ki67LI may be a useful tool in the identification of responders to preoperative docetaxel/capecitabine in early-stage breast cancer. Electronic supplementary materialThe online version of this article (doi:10.1007/s10549-013-2691-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.