The objective of the present studies was to define the enzyme systems catalysing the 6-hydroxylation of melatonin, by monitoring the levels of 6-sulphatoxymelatonin in rat hepatic postmitochondrial preparations and in precision-cut liver slices. Melatonin 6-hydroxylase activity was localized in microsomes and was supported by NADPH, but not NADH. Treatment of rats with beta-naphthoflavone more than tripled 6-sulphatoxymelatonin formation from melatonin, but gave rise only to a moderate increase (25%) in the sulphate conjugation of 6-hydroxymelatonin. Treatment of rats with phenobarbitone, acetone, dexamethasone and clofibrate did not increase 6-sulphatoxymelatonin generation when either melatonin or 6-hydroxymelatonin served as substrates. Of a number of cytochrome P450 inhibitors investigated, only furafylline inhibited markedly the conversion of melatonin to 6-sulphatoxymelatonin without any concomitant effect on the sulphoconjugation of 6-hydroxymelatonin. When liver slices were incubated with melatonin, treatment of rats with beta-naphthoflavone, and to a lesser extent phenobarbitone, elevated the levels of 6-sulphatoxymelatonin in the culture medium. No such increase was seen when slices from beta-naphthoflavone-treated rats were incubated with 6-hydroxymelatonin, whereas a modest increase was seen with slices from phenobarbitone-treated rats. Treatment of rats with acetone, dexamethasone or clofibrate failed to modulate the levels of 6-sulphatoxymelatonin generated from either melatonin or 6-hydroxymelatonin. Molecular modelling analysis revealed that melatonin had a high area/depth(2) ratio, displayed characteristics of CYP1A2 substrates and could be readily accommodated into the human CYP1A2 active site in a position favouring 6-hydroxylation. Collectively, all the above data provide strong experimental evidence that CYP1A2 is an important catalyst of the 6-hydroxylation of melatonin.
The findings suggest that the type of surgery is a predicting factor for seroma formation in breast cancer patients.
1. Objectives were two-fold: (1) to compare the viability of precision-cut liver slices in two culture systems, namely the dynamic organ and the multiwell plate; and (2) to evaluate whether increasing the number of slices per incubation results in a proportional increase in the extent of metabolism. 2. With both culturing systems, the major products of 7-ethoxycoumarin metabolism were the sulphate and glucuronide conjugates of 7-hydroxycoumarin with very low levels of the free compound. When the multiwell plate procedure was used, metabolism increased linearly for at least 10 h, whereas it tended to plateau after 6 h in the dynamic organ culture system. At preincubations > 10 h, significantly more metabolism of 7-ethoxycoumarin was seen in the slices cultured using the multiwell system compared with the dynamic organ system. 3. Morphological evaluation employing light and electron microscopy revealed that liver slices incubated using the multiwell system were structurally better preserved compared with those incubated using the dynamic organ system. 4. Using the multiwell system, increasing the number of slices per incubation from one to two resulted in only a modest increase in the metabolism of 7-ethoxycoumarin. The rate of metabolism of this substrate was much higher with one liver slice when expressed per mg homogenate protein. 5. It is concluded that (1) the multiwell plate culture system for culturing slices is superior to the dynamic organ system in studying the metabolism of xenobiotics following long-term incubations, (2) increasing the number of slices per incubation does not result in a corresponding increase in the rate of metabolism, and (3) in both culture systems optimal viability appears to be within 24 h of incubation.
Background: There appear to be geographical differences in decisions to perform mastectomy or breast conserving surgery for early-stage breast cancer. This study was carried out to evaluate general surgeons' preferences in breast cancer surgery and to assess the factors predicting cancer practice in Iran.
Background In this label-free bioassay, an electrochemiluminescence (ECL) immunosensor was developed for the quantification of breast cancer using HER-2 protein as a metastatic biomarker. Method For this purpose, the ECL emitter, [Ru(bpy)3]2+, was embedded into biocompatible chitosan (CS) polymer. The prepared bio-composite offered high ECL reading due to the depletion of human epidermal growth factor receptor 2 (HER-2) protein. Reduced graphene oxide (rGO) was used as substrate to increase signal stability and achieve greater sensitivity. For this, rGO was initially placed electrochemically on the glassy carbon electrode (GCE) surface by cyclic voltammetry (CV) technique. Next, the prepared CS/[Ru(bpy)3]2+ biopolymer solution was coated on a drop of the modified electrode such that the amine groups of CS and the carboxylic groups of rGO could covalently interact. Using EDC/NHS chemistry, monoclonal antibodies (Abs) of HER-2 were linked to CS/[Ru(bpy)3]2+/rGO/GCE via amide bonds between the carboxylic groups of Ab molecules and amine groups of CS. The electrochemical behavior of the electrode was studied using different electrochemical techniques such as electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV) and square wave voltammetry (SWV) and also ECL tests. Results After passing all optimization steps, the lower limit of detection (LLOQ) and linear dynamic range (LDR) of HER-2 protein were practically obtained as 1 fM and 1 fM to 1 nM, individually. Importantly, the within and between laboratory precisions were performed and the suitable relative standard deviations (RSDs) were recorded as 3.1 and 3.5%, respectively. Conclusions As a proof of concept, the designed immunosensor was desirably applied for the quantification of HER-2 protein in breast cancer suffering patients. As a result, the designed ECL-based immunosensor has the capability of being used as a conventional test method in biomedical laboratories for early detection of HER-2 protein in biological fluids. Graphic Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.