In Isfahan province of Iran, pistachio and almond are used specifically as ingredients to produce Gaz sweets, which are a typical product of Isfahan and exported to many countries. In this survey, 112 samples were gathered from different corresponding Gaz producers from 2007 to 2012 to evaluate the occurrence of aflatoxins (AF) in these products. Samples were analysed for AFB1, AFB2, AFG1 and AFG2 using immunoaffinity column clean-up (IC) and quantified by high-performance liquid chromatography (HPLC) with fluorescence detection. Among the samples analysed, AFB1 was detected in 13.4% of the samples above the maximum limit (ML) as set in Iran (5 µg/kg). Total AF (AFT) was above the ML in 9.8% of the samples. This study showed that full consideration is equally essential for nuts used as ingredients in special food products such as the Gaz sweets as for nuts for direct human consumption. It suggests a need for modifying the current trend of supervision.
Detoxification of aflatoxin M1 from solution and milk using layered double hydroxides was investigated. The Aluminum‐Magnesium layered double hydroxide (Al‐Mg LDH) and Iron‐Magnesium layered double hydroxide (Fe‐Mg LDH) were selected in their calcined and non‐calcined forms to evaluate the effect of the calcination on detoxification. These materials were produced using the co‐precipitation method. Preliminary adsorption tests confirmed use of Al‐Mg LDH as the selected adsorbent. Characteristics of the adopted adsorbent were studied and confirmed by XRD, FTIR, SEM, and BET methods. Effects of the initial content of aflatoxin, amount of the adsorbents and detoxification time were investigated. Influence of the adsorbents on the nutritional aspects of milk were also studied. The study showed that while the non‐calcined forms of LDH were not able to adsorb aflatoxin M1 more than 23%, the calcined form of Al‐Mg LDH exhibited 100% adsorption in the solutions and about 70–100% in the contaminated milk samples. The reason is pointed to the fact that calcination of Al‐Mg LDH considerably increased the surface area, the total pore volume, and the pore size of the material. Multivariate regression analysis and calculation of the Pearson correlation factor showed that the remained aflatoxin at each time was more strongly correlated with the initial amount of aflatoxin and the elapsed time and less strongly with the amount of the adsorbent. It was found that the adsorption isotherms fitted to the Freundlich equation with a high adsorption capacity of 555.5 mg g−1.
Practical Application
This study is focused on examining ability of layered double hydroxides (LDH) for adsorbing AFM1. LDHs are promising layered materials due to some of their interesting characteristics, such as ease of synthesis and uniqueness of structure. In practice, results of this study can be used for detoxification of aflatoxin, especially in milk, at high efficiency in shorter time durations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.