The less stability and robustness, high-cost preparation and maintenance of natural enzymes, especially horseradish peroxidase (HRP), challenge researchers to introduce effective alternatives for their wide applications. Herein, the peroxidase-like activity of AuCu bimetal nanoclusters (AuCu NCs) was investigated in the rhodamine B-H2O2 chemiluminescence (CL) system. AuCu NCs could effectively catalyzed the CL reaction, and a high intensive emission intensity was obtained. A comprehensive study was implemented to examine the effects of different stabilizing ligands and Au/Cu ratios on the catalytic activity of obtained NCs. Comparison experiments were also expanded to include Au and Cu nanoparticles with different sizes, too. The results verified the superior catalytic activity of penicillaminestabilized AuCu bimetal NCs containing 50% cu atoms. Finally, the analytical application of the introduced CL system showed great sensitivity for H2O2 detection, with a detection limit of 0.13 nM. Moreover, the developed CL method was able to measure glucose and xanthine over wide concentration ranges of 0.1-400 and 0.1-200 μM, respectively. The method also indicated satisfactory reliability, confirmed by standard reference materials.
Introducing novel mimic materials as alternatives for natural enzymes challenges the analysts. Study on the peroxidase-like materials is an active field in analytical research areas. Herein, Au/Cu bimetal nanoclusters (Au/Cu NCs) are introduced as highly efficient peroxidase mimics, which were investigated using fluorometric and colorimetric techniques. A comprehensive comparison between the catalytic activity of Au, Cu, and their bimetal NCs, with different ratios of Au/Cu was performed using some different peroxidase substrates (including 3,3′,5,5′-tetramethylbenzidine (TMB), o-phenylenediamine dihydrochloride (OPD), and terephthalic acid (TA)). Additionally, different capping agents were applied for the synthesis of NCs, and it was found that penicillamine-capped NCs with 50% Cu have higher activity than other synthesized NCs. Analytical application of the novel mimic for H2O2 detection caused a linear calibration in a wide linear range of 0.001–3 μmol/L, and a great detection limit (3S) of 0.18 nmol/L, using a sensitive fluorescence system. The developed system was also sensitive for recognizing glucose and cholesterol in blood samples, after their enzymatic oxidation and production of H2O2. Detection limits of 55 and 15 nmol/L were obtained for glucose and cholesterol, respectively. The presented method also showed good reliability, which was validated by certified reference materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.