Intracytoplasmic sperm injection (ICSI) is a technique developed to help attain successful fertilisation for couples with severe male factor. However, a small percentage of couples confront low or failed fertilisation, mainly due to failed oocyte activation.
Bone tissue engineering is a practical approach to repairing broken or damaged bones that combines scaffold, cells, and growth factors for treatment. In this study, polycaprolactone (PCL)/gelatin (Ge)/hydroxyapatite (HA) core‐shell nanocomposites have been produced by the coaxial electrospinning method. Coaxial electrospinning is an efficient method for scaffold preparation to provide an interconnected porous fibrous scaffold. The prepared nanocomposite simultaneously benefited from the good mechanical behavior of the core PCL polymer. The desired biological properties also originated from the outer layer of the Ge/HA nanocomposite. Nanofibrous scaffolds' properties were characterized using SEM, TEM, FTIR, TGA, DSC, tensile test, contact angle, and MTT assay. The morphology of the as‐electrospun nanofibers was investigated using SEM and TEM, which revealed a defect‐less fibrous morphology. TEM images showed the core‐shell structure of the prepared scaffold nanofibers. The contact angle test showed that the presence of HA nanoparticles has improved the wettability of fibrous composites. In addition, HA nanoparticles could effectively strengthen the polymer scaffolds. The highest UTS value of 4.1 MPa was obtained in the PCL/(Ge+10%HA) sample. The cytotoxicity results revealed that the prepared scaffolds were utterly biocompatible. Moreover, significant cell proliferation of osteosarcoma cells was observed at high HA contents. The interconnected pores allowed cells to migrate into the scaffolds and grow inside. Based on the obtained results, PCL/(Ge/ HA) core‐shell nanofibers could be a promising candidate for bone scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.