COVID-19 pandemic is a serious global health issue today due to the rapid human to human transmission of SARS-CoV-2, a new type of coronavirus that causes fatal pneumonia. SARS -CoV-2 has a faster rate of transmission than other coronaviruses such as SARS and MERS and until now there are no approved specific drugs or vaccines for treatment. Thus, early diagnosis is crucial to prevent the extensive spread of the disease. The reverse transcription-polymerase chain reaction (RT-PCR) is the most routinely used method until now to detect SARS-CoV-2 infections. However, several other faster and accurate assays are being developed for the diagnosis of COVID-19 aiming to control the spread of infection through the identification of patients and immediate isolation. In this review, we will discuss the various detection methods of the SARS-CoV-2 virus including the recent developments in immunological assays, amplification techniques as well as biosensors.
The Gram-negative bacterium, Salmonella Typhimurium (S. Typhimurium) is a food borne pathogen responsible for numerous hospitalisations and deaths all over the world. Conventional detection methods for pathogens are time consuming and labour-intensive. Hence, there is considerable interest in faster and simpler detection methods. Polypyrrole-based polymers, due to their intrinsic chemical and electrical properties, have been demonstrated to be valuable candidates for the fabrication of chemo/biosensors and functional surfaces. Similarly aptamers have been shown to be good alternatives to antibodies in the development of affinity biosensors. In this study, we report on the combination of poly [pyrrole-co-3-carboxyl-pyrrole] copolymer and aptamer for the development of a label-less electrochemical biosensor suitable for the detection of S. Typhimurium. Impedimetric measurements were facilitated by the effect of the aptamer/target interaction on the intrinsic conjugation of the poly [pyrrole-co-3-carboxyl-pyrrole] copolymer and subsequently on its electrical properties. The aptasensor detected S. Typhimurium in the concentration range 10(2)-10(8) CFU mL(-1) with high selectivity over other model pathogens and with a limit of quantification (LOQ) of 100 CFU mL(-1) and a limit of detection (LOD) of 3 CFU mL(-1). The suitability of the aptasensor for real sample detection was demonstrated via recovery studies performed in spiked apple juice samples. We envisage this to be a viable approach for the inexpensive and rapid detection of pathogens in food, and possibly in other environmental samples.
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.