We synthesize robust clusters of gold satellites positioned with tetrahedral symmetry on the surface of a patchy silica core by adsorption and growth of gold on the patches. First we conduct emulsion polymerization of styrene in the presence of 52 nm silica seeds whose surface has been modified with methacryloxymethyltriethoxysilane (MMS). We derive four-dimple particles from the resulting silica/polystyrene tetrapods. Polystyrene chains are covalently bound to the silica surface within the dimples due to the MMS grafts and they may be thiolated to induce adsorption of 12 nm gold particles. Using chloroauric acid, ascorbic acid and sodium citrate at room temperature, we grow gold from these 12 nm seeds without detachment from or deformation of the dimpled silica surface. We obtain gold satellites of tunable diameter up to 140 nm.
The concept of patchy particles is revolutionizing the research field of colloidal assembly, by the design of particles whose surface is purposely patterned to promote attractive interactions with their neighbors in limited number, and in privileged and programmed directions. The idea of magnetic patches makes it possible to imagine assemblies not only spontaneous by simple magnetic coupling but also triggered and canceled at will due to external magnetic fields. This review shows that studies published until now mainly deal with particles with a single magnetic patch, often called Janus particles. The very diverse synthetic routes have been brought together into four main strategies, covering the size range from 100 nm to 100 µm. Their assembly capacity is described both from experimental and simulation viewpoints. The orientation of the magnetic moment of the patch and its decentering extent with respect to the particle are the key parameters for controlling the morphology of clusters, loops, staggered chains, double chains, helices, microtubes, etc. The review offers some perspectives to generalize these studies to multipatch particles, examples of which are still too rare, and to make assemblies sustainable, especially after the removal of the structuring magnetic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.