Background:
Dapagliflozin, a selective Sodium-glucose cotransporter-2 (SGLT2) inhibitor, has been shown to play a key role in the control and management of the metabolic and cardiac disease.
Objective:
The current study aims to address the effects of dapagliflozin on the expression of fractalkine (FKN), known as CX3CL1, and its receptors CX3CR1, Nuclear factor-kappa B(NF-κB) p65 activity, Reactive oxygen species (ROS), and inflammation in LPS-treated H9c2 cell line.
Methods:
H9c2 cells were cultured with lipopolysaccharide (LPS) to establish a model of LPS-induced damage and then subsequently were treated with dapagliflozin for 72 h. Our work included measurement of cell viability (MTT), Malondialdehyde (MDA), intracellular ROS, tumor necrosis factor-α (TNF-α), NF-κB activity, and expression CX3CL1/CX3CR1.
Results:
The results showed that LPS-induced reduction of cell viability was successfully rescued by dapagliflozin treatment. The cellular levels of MDA, ROS, and TNF-α, as an indication of cellular oxidative stress and inflammation, were significantly elevated in H9c2 cells compared to the control group. Furthermore, dapagliflozin ameliorated inflammation and oxidative stress through the modulation of the levels of MDA, TNF-α, and ROS. Correspondingly, dapagliflozin reduced the expression of CX3CL1/CX3CR1, NF-κB p65 DNA binding activity and it also attenuated nuclear acetylated NF-κB p65 in LPS-induced injury in H9c2 cells compared to untreated cells.
Conclusion:
These findings shed light on the novel pharmacological potential of dapagliflozin in the alleviation of LPS-induced CX3CL1/CX3CR1-mediated injury in inflammatory conditions such as sepsis-induced cardiomyopathy.
The nonlinear ANN-QSAR model based on the topological polarizability, geometrical steric, hydrophobicity and substituted benzene functional group indices might be able to help for designing novel pyridinone NNRTIs.
Objective: Amnion membrane (AM) has been popular for the treatment of inflammatory disorders due to its cell repairing properties. This current study aims to find the underlying mechanisms of amnion membrane proteins (AMPs) against the pro-inflammatory miRNA, miR-155, miR-146, and antiapoptotic microRNA, miR-21, in LPS-treated H9c2 cells. Methods: Cell viability and apoptosis were determined by MTT assay and annexin V/PI staining. The production of the cytokines, TNF-a and IL-6 were evaluated by using qPCR and Enzyme-linked immunosorbent assay (ELISA), respectively. In addition, the expression of miRNAs was quantified by qPCR, and also the protein level of TLR4 and NF-kb was determined with western blotting. Results: We found that AMPs ameliorated LPS-induced reduction of cell viability and augment apoptosis in H9c2 cells. AMPs efficiently inhibited cytokine expression (IL-6 and TNF-a) and activity of TLR4/ NF-jB pathway in LPS-treated H9c2 cells. Correspondingly, in parallel with the suppression of proinflammatory cytokines and apoptosis, AMPs mitigated pro-inflammatory miRNA, miR-155 expression, while, the expression of miR-155 was found to be increased in LPS-treated H9c2 cells. Also, AMPs activated miR-146 expression in H9c2 cells under LPS treatment. Additionally, the elevated expression of miR-21 provoked by LPS was further enhanced by AMPs. Conclusions: In conclusion, AMPs could alleviate LPS-induced cardiomyocytes cells injury via up-regulation of miR-21, miR-146, and suppression of TLR4/NF-jB pathway, which plays a key role in the down-regulation of LPS-mediated miR-155 and inflammatory cytokine expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.