The embryonic vertebrate heart is composed of two major chambers, a ventricle and an atrium, each of which has a characteristic size, shape and functional capacity that contributes to efficient circulation. Chamber-specific gene expression programs are likely to regulate key aspects of chamber formation. Here, we demonstrate that epigenetic factors also have a significant influence on chamber morphogenesis. Specifically, we show that an atrium-specific contractility defect has a profound impact on ventricular development. We find that the zebrafish locus weak atrium encodes an atrium-specific myosin heavy chain that is required for atrial myofibrillar organization and contraction. Despite their atrial defects, weak atrium mutants can maintain circulation through ventricular contraction. However, the weak atrium mutant ventricle becomes unusually compact,exhibiting a thickened myocardial wall, a narrow lumen and changes in myocardial gene expression. As weak atrium/atrial myosin heavy chainis expressed only in the atrium, the ventricular phenotypes in weak atrium mutants represent a secondary response to atrial dysfunction. Thus, not only is cardiac form essential for cardiac function, but there also exists a reciprocal relationship in which function can influence form. These findings are relevant to our understanding of congenital defects in cardiac chamber morphogenesis.
The atomic-level mechanisms by which G protein-coupled receptors (GPCRs) transmit extracellular ligand binding events through their transmembrane helices to activate intracellular G proteins remain unclear. Using a comprehensive library of mutations covering all 352 residues of the GPCR CXC chemokine receptor 4 (CXCR4), we identified 41 amino acids that are required for signaling induced by the chemokine ligand CXCL12 (stromal cell-derived factor 1). CXCR4 variants with each of these mutations do not signal properly but remain folded, based on receptor surface trafficking, reactivity to conformationally sensitive monoclonal antibodies, and ligand binding. When visualized on the structure of CXCR4, the majority of these residues form a continuous intramolecular signaling chain through the transmembrane helices; this chain connects chemokine binding residues on the extracellular side of CXCR4 to G proteincoupling residues on its intracellular side. Integrated into a cohesive model of signal transmission, these CXCR4 residues cluster into five functional groups that mediate (i) chemokine engagement, (ii) signal initiation, (iii) signal propagation, (iv) microswitch activation, and (v) G protein coupling. Propagation of the signal passes through a "hydrophobic bridge" on helix VI that coordinates with nearly every known GPCR signaling motif. Our results agree with known conserved mechanisms of GPCR activation and significantly expand on understanding the structural principles of CXCR4 signaling.T he CXC chemokine receptor 4 (CXCR4) belongs to the G protein-coupled receptor (GPCR) superfamily of proteins, the largest class of integral membrane proteins encoded in the human genome, comprising greater than 30% of current drug targets. Deregulation of CXCR4 expression in multiple human cancers, its role in hematopoietic stem cell migration, and the utilization of CXCR4 by HIV-1 for T-cell entry, make this receptor an increasingly important therapeutic target (1). One FDA-approved drug against CXCR4 is currently on the market (Mozobil, for hematopoietic stem cell mobilization), and multiple additional drugs against this target are in development for oncology and other indications (2).The crystal structures of class A GPCR superfamily members in their active and inactive conformations (reviewed in refs. 3 and 4) provide unprecedented insight into the structural basis of ligand binding, G protein coupling, and activation of GPCRs via rearrangements of transmembrane (TM) helices. GPCR helices V and VI in particular, and in some cases III and VII, are known to undergo significant conformational changes upon activation (5-7). However, static images alone have not been able to explain the residue-level mechanisms underlying the dynamic helical shifts that mediate GPCR signal transduction. Additionally, only inactive state structures have been solved for CXCR4 and most other GPCRs (8,9). Over the last two decades, extensive mutagenesis studies of GPCRs in general [collectively describing >8,000 mutations (gpcrdb.org)] and of CX...
Bitter taste stimuli are detected by a diverse family of G protein-coupled receptors (GPCRs) expressed in gustatory cells. Each bitter taste receptor (TAS2R) responds to an array of compounds, many of which are toxic and can be found in nature. For example, human TAS2R16 (hTAS2R16) responds to β-glucosides such as salicin, and hTAS2R38 responds to thiourea-containing molecules such as glucosinolates and phenylthiocarbamide (PTC). While many substances are known to activate TAS2Rs, only one inhibitor that specifically blocks bitter receptor activation has been described. Here, we describe a new inhibitor of bitter taste receptors, p-(dipropylsulfamoyl)benzoic acid (probenecid), that acts on a subset of TAS2Rs and inhibits through a novel, allosteric mechanism of action. Probenecid is an FDA-approved inhibitor of the Multidrug Resistance Protein 1 (MRP1) transporter and is clinically used to treat gout in humans. Probenecid is also commonly used to enhance cellular signals in GPCR calcium mobilization assays. We show that probenecid specifically inhibits the cellular response mediated by the bitter taste receptor hTAS2R16 and provide molecular and pharmacological evidence for direct interaction with this GPCR using a non-competitive (allosteric) mechanism. Through a comprehensive analysis of hTAS2R16 point mutants, we define amino acid residues involved in the probenecid interaction that result in decreased sensitivity to probenecid while maintaining normal responses to salicin. Probenecid inhibits hTAS2R16, hTAS2R38, and hTAS2R43, but does not inhibit the bitter receptor hTAS2R31 or non-TAS2R GPCRs. Additionally, structurally unrelated MRP1 inhibitors, such as indomethacin, fail to inhibit hTAS2R16 function. Finally, we demonstrate that the inhibitory activity of probenecid in cellular experiments translates to inhibition of bitter taste perception of salicin in humans. This work identifies probenecid as a pharmacological tool for understanding the cell biology of bitter taste and as a lead for the development of broad specificity bitter blockers to improve nutrition and medical compliance.
Cdc14A and Cdc14B knockout cells with double-strand breaks still arrest in G2, but they fail to repair the damage.
The human malaria parasite, Plasmodium falciparum, maintains a persistent infection altering the proteins expressed on the surface of the infected red blood cells, thus avoiding the host immune response. The primary surface antigen, a protein called PfEMP1, is encoded by a multicopy gene family called var. Each individual parasite only expresses a single var gene at a time, maintaining all other members of the family in a transcriptionally silent state. Previous work using reporter genes in transiently transfected plasmid constructs implicated a conserved intron found in all var genes in the silencing process. Here we have utilized episomal recombination within stably transformed parasites to generate different var promoter and intron arrangements and show that loss of the intron results in var promoter activation. Further, in multicopy plasmid concatamers, each intron could only silence a single promoter, suggesting a one-to-one pairing requirement for silencing. Transcriptionally active, "unpaired" promoters remained active after integration into a chromosome; however, they were not recognized by the pathway that maintains mutually exclusive var gene expression. The data indicate that intron/promoter pairing is responsible for silencing each individual var gene and that disruption of silencing of one gene does not affect the transcriptional activity of neighboring var promoters. This suggests that silencing is regulated at the level of individual genes rather than by assembly of silent chromatin throughout a chromosomal region, thus providing a possible explanation of how a var gene can be maintained in a silent state while the immediately adjacent var gene is transcriptionally active.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.