The liver has a remarkable capacity to regenerate after injury; yet, the role of macrophages (MF) in this process remains controversial mainly due to difficulties in distinguishing between different MF subsets. In this study, we used a murine model of acute liver injury induced by overdose of N-acetyl-p-aminophenol (APAP) and defined three distinct MF subsets that populate the liver following injury. Accordingly, resident Kupffer cells (KC) were significantly reduced upon APAP challenge and started recovering by self-renewal at resolution phase without contribution of circulating Ly6Chi monocytes. The latter were recruited in a CCR2- and M-CSF–mediated pathway at the necroinflammatory phase and differentiated into ephemeral Ly6Clo MF subset at resolution phase. Moreover, their inducible ablation resulted in impaired recovery. Microarray-based molecular profiling uncovered high similarity between steady-state KC and those recovered at the resolution phase. In contrast, KC and monocyte-derived MF displayed distinct prorestorative genetic signature at the resolution phase. Finally, we show that infiltrating monocytes acquire a prorestorative polarization manifested by unique expression of proangiogenesis mediators and genes involved with inhibition of neutrophil activity and recruitment and promotion of their clearance. Collectively, our results present a novel phenotypic, ontogenic, and molecular definition of liver-MF compartment following acute injury.
The hepatorenal sonographic index is a sensitive noninvasive method for steatosis quantification. It can diagnose small amounts of liver fat that would be missed by conventional sonography. It is reproducible and operator independent and can serve as an efficient tool to follow patients with steatosis and evaluate the efficacy of new treatment techniques.
1,25(OH)(2)D(3) has antiproliferative and antifibrotic effects on liver fibrosis in in vitro and in vivo models and may be considered as having potential therapeutic value.
Immunotherapies targeting T lymphocytes are revolutionizing cancer therapy but only benefit a subset of patients, especially in colorectal cancer. Thus, additional insight into the tumor microenvironment (TME) is required. Eosinophils are bone marrow–derived cells that have been largely studied in the context of allergic diseases and parasite infections. Although tumor-associated eosinophilia has been described in various solid tumors including colorectal cancer, knowledge is still missing regarding eosinophil activities and even the basic question of whether the TME promotes eosinophil recruitment without additional manipulation (e.g., immunotherapy) is unclear. Herein, we report that eosinophils are recruited into developing tumors during induction of inflammation-induced colorectal cancer and in mice with the Apcmin/+ genotype, which develop spontaneous intestinal adenomas. Using adoptive transfer and cytokine neutralization experiments, we demonstrate that the TME supported prolonged eosinophil survival independent of IL5, an eosinophil survival cytokine. Tumor-infiltrating eosinophils consisted of degranulating eosinophils and were essential for tumor rejection independently of CD8+ T cells. Transcriptome and proteomic analysis revealed an IFNγ-linked signature for intratumoral eosinophils that was different from that of macrophages. Our data establish antitumorigenic roles for eosinophils in colorectal cancer. These findings may facilitate the development of pharmacologic treatments that could unleash antitumor responses by eosinophils, especially in colorectal cancer patients displaying eosinophilia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.