Immunotherapies targeting T lymphocytes are revolutionizing cancer therapy but only benefit a subset of patients, especially in colorectal cancer. Thus, additional insight into the tumor microenvironment (TME) is required. Eosinophils are bone marrow–derived cells that have been largely studied in the context of allergic diseases and parasite infections. Although tumor-associated eosinophilia has been described in various solid tumors including colorectal cancer, knowledge is still missing regarding eosinophil activities and even the basic question of whether the TME promotes eosinophil recruitment without additional manipulation (e.g., immunotherapy) is unclear. Herein, we report that eosinophils are recruited into developing tumors during induction of inflammation-induced colorectal cancer and in mice with the Apcmin/+ genotype, which develop spontaneous intestinal adenomas. Using adoptive transfer and cytokine neutralization experiments, we demonstrate that the TME supported prolonged eosinophil survival independent of IL5, an eosinophil survival cytokine. Tumor-infiltrating eosinophils consisted of degranulating eosinophils and were essential for tumor rejection independently of CD8+ T cells. Transcriptome and proteomic analysis revealed an IFNγ-linked signature for intratumoral eosinophils that was different from that of macrophages. Our data establish antitumorigenic roles for eosinophils in colorectal cancer. These findings may facilitate the development of pharmacologic treatments that could unleash antitumor responses by eosinophils, especially in colorectal cancer patients displaying eosinophilia.
Accumulating data have indicated a fundamental role of eosinophils in regulating adipose tissue homeostasis. Here, we performed whole-genome RNA sequencing of the small intestinal tract, which suggested the presence of impaired lipid metabolism in eosinophil-deficient ΔdblGATA mice. ΔdblGATA mice fed a high-fat diet (HFD) showed reduced body fat mass, impaired enlargement of adipocytes, decreased expression of adipogenic genes, and developed glucose intolerance. HFD induced accumulation of eosinophils in the perigonadal white adipose tissue. Concordantly, adipocyte-differentiated 3T3-L1 cells promoted the migration of eosinophils through the expression of CCL11 (eotaxin-1) and likely promoted their survival through the expression of interleukin (IL)-3, IL-5, and granulocyte-macrophage colony-stimulating factor. HFD-fed ΔdblGATA mice showed increased infiltration of macrophages, CD4+ T-cells, and B-cells, increased expression of interferon-γ, and decreased expression of IL-4 and IL-13 in white adipose tissue. Interferon-γ treatment significantly decreased lipid deposition in adipocyte-differentiated 3T3-L1 cells, while IL-4 treatment promoted lipid accumulation. Notably, HFD-fed ΔdblGATA mice showed increased lipid storage in the liver as compared with wild-type mice. We propose that obesity promotes the infiltration of eosinophils into adipose tissue that subsequently contribute to the metabolic homeostasis by promoting adipocyte maturation.
IL-4 receptor (R) α, the common receptor chain for IL-4 and IL-13, is a critical component in IL-4-and IL-13-mediated signaling and subsequent effector functions such as those observed in type 2 inflammatory responses. Nonetheless, the existence of intrinsic pathways capable of amplifying IL-4Rα-induced responses remains unknown. In this study, we identified the myeloid-associated Ig receptor CD300f as an IL-4-induced molecule in macrophages. Subsequent analyses demonstrated that CD300f was colocalized and physically associated with IL-4Rα. Using Cd300f −/− cells and receptor cross-linking experiments, we established that CD300f amplified IL-4Rα-induced responses by augmenting IL-4/IL-13-induced signaling, mediator release, and priming. Consistently, IL-4-and aeroallergen-treated Cd300f −/− mice displayed decreased IgE production, chemokine expression, and inflammatory cell recruitment. Impaired responses in Cd300f−/− mice were not due to the inability to generate a proper Th2 response, because IL-4/IL-13 levels were markedly increased in allergen-challenged Cd300f −/− mice, a finding that is consistent with decreased cytokine consumption. Finally, CD300f expression was increased in monocytes and eosinophils obtained from allergic rhinitis patients. Collectively, our data highlight a previously unidentified role for CD300f in IL-4Rα-induced immune cell responses. These data provide new insights into the molecular mechanisms governing IL-4Rα-induced responses, and may provide new therapeutic tools to target IL-4 in allergy and asthma.IL-4 receptor | eosinophil | macrophage | CD300f | inflammation
IL-13 and IL-4 are potent mediators of type 2–associated inflammation such as those found in atopic dermatitis (AD). IL-4 shares overlapping biological functions with IL-13, a finding that is mainly explained by their ability to signal via the type 2 IL-4 receptor (R), which is composed of IL-4Rα in association with IL-13Rα1. Nonetheless, the role of the type 2 IL-4R in AD remains to be clearly defined. Induction of two distinct models of experimental AD in Il13ra1−/− mice, which lack the type 2 IL-4R, revealed that dermatitis, including ear and epidermal thickening, was dependent on type 2 IL-4R signaling. Expression of TNF-α was dependent on the type 2 IL-4R, whereas induction of IL-4, IgE, CCL24, and skin eosinophilia was dependent on the type 1 IL-4R. Neutralization of IL-4, IL-13, and TNF-α as well as studies in bone marrow–chimeric mice revealed that dermatitis, TNF-α, CXCL1, and CCL11 expression were exclusively mediated by IL-13 signaling via the type 2 IL-4R expressed by nonhematopoietic cells. Conversely, induction of IL-4, CCL24, and eosinophilia was dependent on IL-4 signaling via the type 1 IL-4R expressed by hematopoietic cells. Last, we pharmacologically targeted IL-13Rα1 and established a proof of concept for therapeutic targeting of this pathway in AD. Our data provide mechanistic insight into the differential roles of IL-4, IL-13, and their receptor components in allergic skin and highlight type 2 IL-4R as a potential therapeutic target in AD and other allergic diseases such as asthma and eosinophilic esophagitis.
Mortalin/GRP75 is a ubiquitous mitochondrial chaperone related to the cytosolic heat shock protein 70 (HSP70). It protects cells from senescence and apoptosis and is overexpressed in cancer cells. Cell resistance to complement-dependent cytotoxicity depends on mortalin and during complement attack mortalin is released from cells. Our goal was to determine whether cancer patients have circulating mortalin in blood. The significance of mortalin in blood to survival prospects of colorectal cancer patients was evaluated. Occurrence of extracellular soluble HSP70 (sHSP70) is documented. We developed a sensitive ELISA for mortalin. The association between mortalin level and survival was subjected to the Cox proportional hazards analysis (univariate and multivariate analyses). Mortalin concentration in serum of colorectal cancer patients was 10-214 ng/ml. Survival data of the patients were known from an earlier study of sHSP70 in these samples. Cox regression analysis indicated that high mortalin (>60 ng/ml) is a risk factor for shorter survival. Serum levels of sHSP70 and mortalin in patients were independent variables. Concurrence of high sHSP70 and mortalin was associated with rapid disease progression (HR 5 4, 2.04-8.45, p < 0.001). Addition of high sHSP70 and mortalin to a baseline model of age, sex and TNM stage, significantly (p < 0.001) enhanced the risk score to 8 (3.26-20.46). This is the first demonstration of circulating mortalin in cancer patients. Analysis of mortalin in blood, and even more so of mortalin and sHSP70, adds a high prognostic value to the TNM stage and will identify colorectal cancer patients at high risk of poor survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.