Abstract. The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of highcapacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers and research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.
Realizing operational analytics solutions where large and complex data must be analyzed in a time-critical fashion entails integrating many different types of technology. This paper focuses on an interdisciplinary combination of scientific data management and visualization/analysis technologies targeted at reducing the time required for data filtering, querying, hypothesis testing and knowledge discovery in the domain of network connection data analysis. We show that use of compressed bitmap indexing can quickly answer queries in an interactive visual data analysis application, and compare its performance with two alternatives for serial and parallel filtering/querying on 2.5 billion records' worth of network connection data collected over a period of 42 weeks. Our approach to visual network connection data exploration centers on two primary factors: interactive ad-hoc and multiresolution query formulation and execution over n dimensions and visual display of the n−dimensional histogram results. This combination is applied in a case study to detect a distributed network scan and to then identify the set of remote hosts participating in the attack. Our approach is sufficiently general to be applied to a diverse set of data understanding problems as well as used in conjunction with a diverse set of analysis and visualization tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.