The COBE Diffuse Infrared Background Experiment (DIRBE) was designed to search for the cosmic infrared background (CIB) radiation. For an observer confined to the inner solar system, scattered light and thermal emission from the interplanetary dust (IPD) are major contributors to the diffuse sky brightness at most infrared wavelengths. Accurate removal of this zodiacal light foreground is a necessary step toward a direct measurement of the CIB.The zodiacal light foreground contribution in each of the 10 DIRBE wavelength bands ranging from 1.25 to 240 µm is distinguished by its apparent seasonal variation over the whole sky. This contribution has been extracted by fitting the brightness calculated from a parameterized physical model to the time variation of the all-sky DIRBE measurements over 10 months of liquid-He-cooled observations. The model brightness is evaluated as the integral along the line of sight of the product of a source function and a three-dimensional dust density distribution function. The dust density distribution is composed of multiple components: a smooth cloud, three asteroidal dust bands, and a circumsolar ring near 1 A.U. By using a directly measurable quantity which relates only to the IPD cloud, we exclude other contributors to the sky brightness from the IPD model.
The COBE FIRAS data contain foreground emission from interplanetary, Galactic interstellar dust and extragalactic background emission. We use three different methods to separate the various emission components, and derive the spectrum of the extragalactic Far InfraRed Background (FIRB). Each method relies on a different set of assumptions, which affect the FIRB spectrum in different ways. Despite this, the FIRB spectra derived by these different methods are remarkably similar. The average spectrum that we derive in the ν = 5 − 80 cm −1 (2000 -125 µm) frequency interval is:, where ν 0 = 100 cm −1 (λ 0 = 100 µm) and P is the Planck function. The derived FIRB spectrum is consistent with the DIRBE 140 and 240 µm detections. The total intensity received in the 5 -80 cm −1 frequency interval is 14 nW m −2 sr −1 , and comprises about 20% of the total intensity expected from the energy release from nucleosynthesis throughout the history of the universe.
We present models for the evolution of the elemental abundances in the gas and dust phases of the interstellar medium (ISM) of our Galaxy by generalizing standard models for its dynamical and chemical evolution. In these models, the stellar birthrate history is determined by the infall rate of primordial gas, and by its functional dependence on the mass surface density of the stars and gas. We adopt a two component model for the Galaxy, consisting of a central bulge and an exponential disk with different infall rates and stellar birthrate histories. Condensation in stellar winds, Type Ia and Type II supernovae, and the accretion of refractory elements onto preexisting grains in dense molecular clouds are the dominant contributors to the abundance of elements locked up in the dust. Grain destruction by sputtering and evaporative grain-grain collisions in supernova remnants are the most important mechanisms that return these elements back to the gas phase.Guided by observations of dust formation in various stellar sources, and by the presence of isotopic anomalies in meteorites, we calculate the production yield of silicate and carbon dust as a function of stellar mass. We find that Type II supernovae are the main source of silicate dust in the Galaxy. Carbon dust is produced primarily by low mass stars in the ∼ 2 -5 M ⊙ mass range. Type Ia SNe can be important sources of metallic iron dust in the ISM.We also analyze the origin of the elemental depletion pattern, and find that the observed core + mantle depletion must reflect the efficiency of the accretion process in the ISM. We also find that grain destruction is very efficient, leaving only ∼ 10% of the refractory elements in grain cores. Observed core depletions are significantly higher, requiring significant UV, cosmic ray, or shock processing of the accreted mantle into refractory core material.Adopting the current grain destruction lifetimes from Jones et al. (1996), we formulate a prescription for its evolution in time. We make a major assumption, that the accretion timescale evolves in a similar fashion, so that the current ratio between these quantities is preserved over time. We then calculate the evolution of the dust abundance and composition at each Galactocentric radius as a function of time.We find that the dust mass is linearly proportional to the ISM metallicity, and is equal to about 40% of the total mass of heavy elements in the Galaxy, independent of Galactocentric radius. The derived relation of dust mass with metallicity is compared to the observed Galactic dust abundance gradient, and to the M dust versus log(O/H) relation that is observed in external Dwarf galaxies.The dependence of dust composition on the mass of the progenitor star, and the delayed recycling of newly synthesized dust by low mass stars back to the ISM give rise to variations in the dust composition as a function of time. We identify three distinct epochs in the evolution of the dust composition, characterized by different carbon-to-silicate mass ratios. Two such epochs are...
ABSTRACT:The cosmic infrared background records much of the radiant energy released by processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In the past few years, data from the Cosmic Background Explorer (COBE) mission provided the first measurements of this background, with additional constraints coming from studies of the attenuation of TeV γ-rays. At the same time there has been rapid progress in resolving a significant fraction of this background with the deep galaxy counts at infrared wavelengths from the Infrared Space Observatory (ISO) instruments and at submillimeter wavelengths from the Submillimeter Common User Bolometer Array (SCUBA) instrument. This article reviews the measurements of the infrared background and sources contributing to it, and discusses the implications for past and present cosmic processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.