The first geothermal binary system in Indonesia that has successfully implemented is a 500kW binary system in Lahendong. Yet, there is still a plenty room of improvement for binary system development in Lahendong. This study aims to give an alternative design of the binary system by using an organic Rankine cycle. The investigations of thermodynamic analysis based on the law of thermodynamics, silica scaling analysis, and optimization of working fluid selection are presented. Flashing process from separator produces vapor and liquid-brine with mass flow rates 48.6 kg/s and 173.6 kg/s at separator pressure of 10.23 bar. Based on second law thermodynamics analysis, obtained the maximum useful energy from brine flow is 7.2MW. Based on the simulation results, it is achieved that the potential power generated by waste heat from the Lahendong plant is 2.46MW with the net thermal and exergy efficiency by 11% and 34%, respectively. Compared to the current operating binary system, still, much available energy needs to be harnessed in the future from the Lahendong plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.