Although transcranial magnetic stimulation (TMS) is a popular tool for both basic research and clinical applications, its actions on nerve cells are only partially understood. We have previously predicted, using compartmental modeling, that magnetic stimulation of central nervous system neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. The simulations also predict that neurons with low current threshold are more susceptible to magnetic stimulation. Here we tested these theoretical predictions by combining in vitro patch-clamp recordings from rat brain slices with magnetic stimulation and compartmental modeling. In agreement with the modeling, our recordings demonstrate the dependence of magnetic stimulation-triggered action potentials on the type and state of the neuron and its orientation within the magnetic field. Our results suggest that the observed effects of TMS are deeply rooted in the biophysical properties of single neurons in the central nervous system and provide a framework both for interpreting existing TMS data and developing new simulation-based tools and therapies.
We have developed and tested a laboratory scale High-Superconducting Magnetic Energy Storage (HT-SMES) system with storage capacity of up to 1.2 kJ. It was designed to improve the power quality for a consumer supplied by 3-phase standard commercial electric power grid at a consumer power of up to 20 kW. This SMES is based on a high-superconducting coil with a ferromagnetic core, immersed in liquid nitrogen at 65 K to provide efficient thermal contact with the coolant. We also developed a cryogenic DC-DC converter based on low resistance power MOSFET transistors, providing low losses in the stored energy and high operational efficiency. The power conditioning capability of our HT-SMES was proved, and compensation of voltage drops in the electric grid was successfully demonstrated.Index Terms-Converters, energy storage, high-temperature superconducting magnets, liquid nitrogen cooling, voltage control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.