Interleukin-1 (IL-1) includes a family of closely related genes; the two major agonistic proteins, IL-1alpha and IL-1beta, are pleiotropic and affect mainly inflammation, immunity and hemopoiesis. The IL-1Ra antagonist is a physiological inhibitor of pre-formed IL-1. Recombinant IL-1alpha and IL-1beta bind to the same receptors and induce the same biological functions. As such, the IL-1 molecules have been considered identical in normal homeostasis and in disease. However, the IL-1 molecules differ in their compartmentalization within the producing cell or the microenvironment. Thus, IL-1beta is solely active in its secreted form, whereas IL-1alpha is mainly active in cell-associated forms (intracellular precursor and membrane-bound IL-1alpha) and only rarely as a secreted cytokine, as it is secreted only in a limited manner. IL-1 is abundant at tumor sites, where it may affect the process of carcinogenesis, tumor growth and invasiveness and also the patterns of tumor-host interactions. Here, we review the effects of microenvironment- and tumor cell-derived IL-1 on malignant processes in experimental tumor models and in cancer patients. We propose that membrane-associated IL-1alpha expressed on malignant cells stimulates anti-tumor immunity, while secretable IL-1beta, derived from the microenvironment or the malignant cells, activates inflammation that promotes invasiveness and also induces tumor-mediated suppression. Inhibition of the function of IL-1 by the IL-1Ra, reduces tumor invasiveness and alleviates tumor-mediated suppression, pointing to its feasibility in cancer therapy. Differential manipulation of IL-1alpha and IL-1beta in malignant cells or in the tumor's microenvironment can open new avenues for using IL-1 in cancer therapy.
The role of microenvironment interleukin 1 (IL-1) on 3-methylcholanthrene (3-MCA)-induced carcinogenesis was assessed in IL-1-deficient mice, i.e., IL-1B
Altogether, our data suggest TXNIP as a novel mediator of GC-induced apoptosis in beta cells and further contribute to our understanding of beta cell death pathways.
Reduced SIRT1 activity and levels during osteoarthritis (OA) promote gradual loss of cartilage. Loss of cartilage matrix is accompanied by an increase in matrix metalloproteinase (MMP) 13, partially because of enhanced LEF1 transcriptional activity. In this study, we assessed the role of SIRT1 in LEF1-mediated MMP13 gene expression in human OA chondrocytes. Results showed that MMP13 protein levels and enzymatic activity decreased significantly during SIRT1 overexpression or activation by resveratrol. Conversely, MMP13 gene expression was reduced in chondrocytes transfected with SIRT1 siRNA or treated with nicotinamide (NAM), a sirtuin inhibitor. Chondrocytes challenged with IL-1b, a cytokine involved in OA pathogenesis, enhanced LEF1 protein levels and gene expression, resulting in increased MMP13 gene expression; however, overexpression of SIRT1 during IL-1b challenge impeded LEF1 levels and MMP13 gene expression. Previous reports showed that LEF1 binds to the MMP13 promoter and transactivates its expression, but we observed that SIRT1 repressed LEF1 protein and mRNA expression, ultimately reducing LEF1 transcriptional activity, as judged by luciferase assay. Finally, mouse articular cartilage from Sirt1 2/2 presented increased LEF1 and MMP13 protein levels, similar to human OA cartilage. Thus, demonstrating for the first time that SIRT1 represses MMP13 in human OA chondrocytes, which appears to be mediated, at least in part, through repression of the transcription factor LEF1, a known modulator of MMP13 gene expression.-Elayyan, J., Lee, E.-J., Gabay, O., Smith, C. A., Qiq, O., Reich, E., Mobasheri, A., Henrotin, Y., Kimber, S. J., Dvir-Ginzberg, M. LEF1-mediated MMP13 gene expression is repressed by SIRT1 in human chondrocytes. FASEB J. 31, 3116-3125 (2017). www.fasebj.orgArticular cartilage undergoes age-related degenerative changes leading to the joint disease osteoarthritis (OA). Gradual loss of hyaline joint cartilage during OA is evoked through chronic synovitis, which involves the accumulation of proinflammatory cytokines, as IL1b, TNF-a, and IL6 within the joint (1-5), subsequently leading to a steady increase in matrix metalloproteinases (MMPs) and a disintegrin and MMP with thrombospondin motifs (ADAMTS) proteins, which further promote cartilage destruction (6-12). Recent experimental attempts ABBREVIATIONS: ACAN, aggrecan gene; ADAMTS, a disintegrin and metalloproteinase with thrombospondin-like motifs; BMP, bone morphogenic protein; ChIP, chromatin immunoprecipitation; COL2A1, collagen-2 a-1 gene; FBS, fetal bovine serum; FGF, fibroblast growth factor; GDF, growth differentiation factor; GSK3b, glycogen synthase kinase-3b; hESC, human embryonic stem cell; KO, knockout; LEF, lymphoid enhancer factor; MMP, matrix metalloproteinase; NAM, nicotinamide adenine mononucleotide; OA, osteoarthritis; Res, resveratrol; qPCR, quantitative PCR; siRNA, small interfering RNA; SIRT1, silent mating type information regulation 2 homolog 1 (sirtuin-1); SOX9, sex-determining-region-on-the-Y-chromosome-relate...
ObjectivePrevious work has established that the deacetylase sirtuin-1 (SIRT1) is cleaved by cathepsin B in chondrocytes subjected to proinflammatory stress, yielding a stable but inactive N-terminal (NT) polypeptide (75SIRT1) and a C-terminal (CT) fragment. The present work examined if chondrocyte-derived NT-SIRT1 is detected in serum and may serve as an investigative and exploratory biomarker of osteoarthritis (OA).MethodsWe developed a novel ELISA assay to measure the ratio of NT to CT of SIRT1 in the serum of human individuals and mice subjected to post-traumatic OA (PTOA) or age-dependent OA (ADOA). We additionally monitored NT/CT SIRT1 in mice subject to ADOA/PTOA followed by senolytic clearance. Human chondrosenescent and non-senescent chondrocytes were exposed to cytokines and analysed for apoptosis and NT/CT SIRT1 ratio in conditioned medium.ResultsWild-type mice with PTOA or ADOA of moderate severity exhibited increased serum NT/CT SIRT1 ratio. In contrast, this ratio remained low in cartilage-specific Sirt1 knockout mice despite similar or increased PTOA and ADOA severity. Local clearance of senescent chondrocytes from old mice with post-traumatic injury resulted in a lower NT/CT ratio and reduced OA severity. While primary chondrocytes exhibited NT/CT ratio increased in conditioned media after prolonged cytokine stimulation, this increase was not evident in cytokine-stimulated chondrosenescent cells. Finally, serum NT/CT ratio was elevated in humans with early-stage OA.ConclusionsIncreased levels of serum NT/CT SIRT1 ratio correlated with moderate OA in both mice and humans, stemming at least in part from non-senescent chondrocyte apoptosis, possibly a result of prolonged inflammatory insult.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.