Purpose: CD133+ glioblastoma (GB) tumor stem-like cells (TSCs) have been defined as radioresistant. However, whereas previously classified relative to CD133− cells, the radiosensitivity of CD133+ TSCs with respect to the standard GB model, established glioma cell lines, has not been determined. Therefore, to better understand the radioresponse of this cancer stem cell, we have used established cell lines as a framework for defining their in vitro radioresponse. Experimental Design: The intrinsic radiosensitivity of CD133+ TSC cultures and established glioma cell lines was determined by clonogenic assay. The TSCs and established cell lines were also compared in terms of DNA double strand break (DSB) repair capacity and cell cycle checkpoint activation. Results: Based on clonogenic analysis, each of the six TSC cultures evaluated was more sensitive to radiation than the established glioma cell lines. Consistent with increased radiosensitivity, the DSB repair capacity as defined by neutral comet assay and γH2AX and Rad51 foci was significantly reduced in TSCs as compared to the cell lines. Whereas G2 checkpoint activation was intact, in contrast to the cell lines, DNA synthesis was not inhibited in TSCs after irradiation indicating the absence of the intra-S phase checkpoint. Conclusions: These data indicate that the mechanisms through which CD133+ TSCs respond to radiation are significantly different from those of the traditional GB in vitro model, established glioma cell lines. If TSCs play a critical role in GB treatment response, then such differences are likely to be of consequence in the development and testing of radiosensitizing agents.
Hypomorphic mutations which lead to decreased function of the NBS1 gene are responsible for Nijmegen breakage syndrome, a rare autosomal recessive hereditary disorder that imparts an increased predisposition to development of malignancy. The NBS1 protein is a component of the MRE11/ RAD50/NBS1 complex that plays a critical role in cellular responses to DNA damage and the maintenance of chromosomal integrity. Using small interfering RNA transfection, we have knocked down NBS1 protein levels and analyzed relevant phenotypes in two closely related human lymphoblastoid cell lines with different p53 status, namely wild-type TK6 and mutated WTK1. Both TK6 and WTK1 cells showed an increased level of ionizing radiation-induced mutation at the TK and HPRT loci, impaired phosphorylation of H2AX (;-H2AX), and impaired activation of the cell cycle checkpoint regulating kinase, Chk2. In TK6 cells, ionizing radiationinduced accumulation of p53/p21 and apoptosis were reduced. There was a differential response to ionizing radiation-induced cell killing between TK6 and WTK1 cells after NBS1 knockdown; TK6 cells were more resistant to killing, whereas WTK1 cells were more sensitive. NBS1 deficiency also resulted in a significant increase in telomere association that was independent of radiation exposure and p53 status. Our results provide the first experimental evidence that NBS1 deficiency in human cells leads to hypermutability and telomere associations, phenotypes that may contribute to the cancer predisposition seen among patients with this disease. (Cancer Res 2005; 65(13): 5544-53)
Purpose Preclinical studies evaluating histone deacetylase (HDAC) inhibitor-induced radiosensitization have largely focused on the preirradiation setting based on the assumption that enhanced radiosensitivity was mediated by changes in gene expression. Our previous investigations identified maximal radiosensitization when cells were exposed to HDAC inhibitors in both the preradiation and postradiation setting. We now expand on these studies to determine whether postirradiation exposure alone affects radiosensitivity. Experimental Design The effects of the HDAC inhibitor valproic acid (VA) on postirradiation sensitivity in human glioma cell lines were evaluated using a clonogenic assay, exposing cells to VA up to 24 h after irradiation. DNA damage repair was evaluated using γH2AX and 53BP1foci and cell cycle phase distribution was analyzed by flow cytometry. Western blot of acetylated γH2AX was done following histone extraction on AUT gels. Results VA enhanced radiosensitivity when delivered up to 24 h after irradiation. Cells accumulated in G2-M following irradiation, although they returned to baseline at 24 h, mitigating the role of cell cycle redistribution in postirradiation sensitization by VA. At12 h after irradiation, significant γH2AX and 53BP1foci dispersal was shown in the control, although cells exposed to VA after irradiation maintained foci expression. VA alone had no effect on the acetylation or phosphorylation of H2AX, although it did acetylate radiation-induced γH2AX. Conclusions These results indicate that VA enhances radiosensitivity at times up to 24 h after irradiation, which has direct clinical application.
Histone deacetylase (HDAC) inhibitors represent an emerging class of anticancer agents progressing through clinical trials. Although their primary target is thought to involve acetylation of core histones, several nonhistone substrates have been identified, including heat shock protein (HSP) 90, which may contribute towards their antitumor activity. Glucose-regulated protein 78 (GRP78) is a member of the HSP family of molecular chaperones and plays a central role in regulating the unfolded protein response (UPR). Emerging data suggest that GRP78 is critical in cellular adaptation and survival associated with oncogenesis and may serve as a cancer-specific therapeutic target. On the basis of shared homology with HSP family proteins, we sought to determine whether GRP78 could serve as a molecular target of the HDAC inhibitor vorinostat. Vorinostat treatment led to GRP78 acetylation, dissociation, and subsequent activation of its client protein double-stranded RNA-activated protein-like endoplasmic reticulum kinase (PERK). Investigations in a panel of cancer cell lines identified that UPR activation after vorinostat exposure is specific to certain lines. Mass spectrometry performed on immunoprecipitated GRP78 identified lysine-585 as a specific vorinostat-induced acetylation site of GRP78. Downstream activation of the UPR was confirmed, including eukaryotic initiating factor 2alpha phosphorylation and increase in ATF4 and C/EBP homologous protein expression. To determine the biologic relevance of UPR activation after vorinostat, RNA interference of PERK was performed, demonstrating significantly decreased sensitivity to vorinostat-induced cytotoxicity. Collectively, these findings indicate that GRP78 is a biologic target of vorinostat, and activation of the UPR through PERK phosphorylation contributes toward its antitumor activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.