Protein−polymer conjugates are widely used in many clinical and industrial applications, but lack of experimental data relating protein−polymer interactions to improved protein stability prevents their rational design. Advances in synthetic chemistry have expanded the palette of polymer designs, including development of nonlinear architectures, novel monomer chemical scaffolds, and control of hydrophobicity, but more experimental data are needed to transform advances in chemistry into next generation conjugates. Using an integrative biophysical approach, we investigated the molecular basis for polymer-based thermal stabilization of a human galectin protein, Gal3C, conjugated with polymers of linear and nonlinear architectures, different degrees of polymerization, and varying hydrophobicities. Independently varying the degree of polymerization and polymer architecture enabled delineation of specific polymer properties contributing to improved protein stability. Insights from NMR spectroscopy of the polymer-conjugated Gal3C backbone revealed patterns of protein−polymer interactions shared between linear and nonlinear polymer architectures for thermally stabilized conjugates. Despite large differences in polymer chemical scaffolds, protein−polymer interactions resulting in thermal stabilization appear conserved. We observed a clear relation between polymer length and protein− polymer thermal stability shared among chemically different polymers. Our data indicate a wide range of polymers may be useful for engineering conjugate properties and provide conjugate design criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.