Diffuse white matter abnormalities and post-hemorrhagic ventricular dilation are common at term and seem to correlate with reduced developmental quotients. Early lesions, except for cerebellar hemorrhage and major destructive lesions, do not show clear relationships with outcomes.
BackgroundWe postulated that during ontogenesis cortical surface area and cerebral volume are related by a scaling law whose exponent gives a quantitative measure of cortical development. We used this approach to investigate the hypothesis that premature termination of the intrauterine environment by preterm birth reduces cortical development in a dose-dependent manner, providing a neural substrate for functional impairment.Methods and FindingsWe analyzed 274 magnetic resonance images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely preterm infants born at 22 to 29 wk of gestation, 63 of whom underwent neurodevelopmental assessment at a median age of 2 y. Cortical surface area was related to cerebral volume by a scaling law with an exponent of 1.29 (95% confidence interval, 1.25–1.33), which was proportional to later neurodevelopmental impairment. Increasing prematurity and male gender were associated with a lower scaling exponent (p < 0.0001) independent of intrauterine or postnatal somatic growth.ConclusionsHuman brain growth obeys an allometric scaling relation that is disrupted by preterm birth in a dose-dependent, sexually dimorphic fashion that directly parallels the incidence of neurodevelopmental impairments in preterm infants. This result focuses attention on brain growth and cortical development during the weeks following preterm delivery as a neural substrate for neurodevelopmental impairment after premature delivery.
US accurately predicted the presence of GLH, IVH, and hemorrhagic parenchymal infarction on MRI. However, its ability to predict the presence of DEHSI and small petechial hemorrhages in the WM on T2 weighted images is not as good, but improves on scans performed at >/=7 days after birth. In addition, normal WM echogenicity on US is not a good predictor of normal WM signal intensity on MRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.