Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic.
BackgroundSingle-cell micro-metastases of solid tumors often occur in the bone marrow. These disseminated tumor cells (DTCs) may resist therapy and lay dormant or progress to cause overt bone and visceral metastases. The molecular nature of DTCs remains elusive, as well as when and from where in the tumor they originate. Here, we apply single-cell sequencing to identify and trace the origin of DTCs in breast cancer.ResultsWe sequence the genomes of 63 single cells isolated from six non-metastatic breast cancer patients. By comparing the cells’ DNA copy number aberration (CNA) landscapes with those of the primary tumors and lymph node metastasis, we establish that 53% of the single cells morphologically classified as tumor cells are DTCs disseminating from the observed tumor. The remaining cells represent either non-aberrant “normal” cells or “aberrant cells of unknown origin” that have CNA landscapes discordant from the tumor. Further analyses suggest that the prevalence of aberrant cells of unknown origin is age-dependent and that at least a subset is hematopoietic in origin. Evolutionary reconstruction analysis of bulk tumor and DTC genomes enables ordering of CNA events in molecular pseudo-time and traced the origin of the DTCs to either the main tumor clone, primary tumor subclones, or subclones in an axillary lymph node metastasis.ConclusionsSingle-cell sequencing of bone marrow epithelial-like cells, in parallel with intra-tumor genetic heterogeneity profiling from bulk DNA, is a powerful approach to identify and study DTCs, yielding insight into metastatic processes. A heterogeneous population of CNA-positive cells is present in the bone marrow of non-metastatic breast cancer patients, only part of which are derived from the observed tumor lineages.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-016-1109-7) contains supplementary material, which is available to authorized users.
Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four-to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic.
BackgroundCharacteristics routinely used to evaluate embryo quality after thawing include number of blastomeres survived and presence of mitosis resumption after overnight culture. It is unknown to which extent symmetry and fragmentation affect implantation after warming and whether application of stricter criteria either before vitrification or after warming would improve implantation rate (IR) of vitrified/warmed embryos. This study aimed to find new parameters to improve selection criteria for vitrification and for transfer after warming.MethodsFirstly, we evaluated standard morphological characteristics (intact survival, mitosis resumption, number of blastomeres, symmetry and fragmentation) of 986 warmed day 3 embryos and, from a subset of 654, we evaluated morphometric characteristics (fragmentation, symmetry and volume change). Secondly, we tested the hypothesis that IR of day 3 vitrified/warmed embryos is influenced by morphometric characteristics. IR per embryo transferred was calculated using embryos that were transferred in a single embryo transfer (SET) or a double embryo transfer (DET) with either 0 or 100 % implantation (830/986). We investigated the significant differences in IR between the different categories of a specific characteristic. These categories were based on our standard embryo evaluation system. The statistical tests Chi-square, Fisher’s exact or Cochrane-Armitage were used according to the type and/or categories of the variable.ResultsThe 986 embryos were transferred in 671 FET cycles with 16.9 % (167/986) IR. After exclusion of DET with 1 embryo implanted, IR per embryo transferred was 12.4 % (103/830). Embryo symmetry, fragmentation and volume change in vitrified/warmed day 3 embryos were not associated with IR. However, when mitosis resumption was present after overnight culture, intact embryos reached significantly higher IR than non-intact embryos and only when the embryo compacted after overnight culture the number of cells damaged after warming had no effect on IR. Concretely, embryos with 8 cells after warming or >9 cells after overnight culture–including compacted embryos–reached the highest IR (>15 %) while embryos with <6 cells after warming or with ≤6 cells after overnight culture had extremely low IR (<1 %).ConclusionsIR of vitrified embryos is determined by the number of cells lost, by the occurrence of mitosis resumption, and by the specific number of blastomeres present but not by fragmentation, blastomere symmetry or volume change. Unselecting embryos for cryopreservation because of fragmentation >10 % and/or symmetry < 75 % only leads to unwanted loss of embryos with acceptable implantation potential.Trial registrationRetrospectively registered NCT02639715.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.