The assessment of transboundary aquifers is essential for the development of groundwater management strategies and the sustainable use of groundwater resources. The Transboundary Aquifer Assessment Program (TAAP) is a joint effort by the United States and Mexico to evaluate shared aquifers. This study examines the TAAP Cooperative Framework as a guide for further transboundary groundwater collaboration. We compared lessons learned from six transboundary aquifers that currently have mechanisms for groundwater collaboration to identify common elements of collaboration. Though the TAAP Cooperative Framework governs an assessment-only program, the elements of collaboration included are consistent with the principles of other institutional agreements around the world. Importantly, all the analyzed agreements included a knowledge-improvement phase, which is the main objective of the TAAP Cooperative Framework. The present study finds evidence of successful outcomes within the TAAP Cooperative Framework consistent with available transboundary groundwater management agreements, demonstrating that this approach is suited to serve as a model for those wishing to engage in transborder aquifer assessments. Furthermore, the TAAP elements of collaboration can help to establish the meaningful and robust binational cooperation necessary for the development of U.S.-Mexico groundwater management agreements at the aquifer level.
Assessing groundwater resources in the arid and semiarid borderlands of the United States and Mexico represents a challenge for land and water managers, particularly in the Transboundary Santa Cruz Aquifer (TSCA). Population growth, residential construction, and industrial activities have increased groundwater demand in the TSCA, in addition to wastewater treatment and sanitation demands. These activities, coupled with climate variability, influence the hydrology of the TSCA and emphasize the need for groundwater assessment tools for decision‐making purposes. This study assesses the impacts of changes in groundwater demand, effluent discharge, and climate uncertainties within the TSCA from downstream of the Nogales International Wastewater Treatment Plant to the northern boundary of the Santa Cruz Active Management Area. We use a conceptual water budget model to analyze the long‐term impact of the different components of potential recharge and water losses within the aquifer. Modeling results project a future that ranges from severe long‐term drying to positive wetting. This research improves the understanding of the impact of natural and anthropogenic variables on water sustainability, with an accessible methodology that can be globally applied.
In the parched Upper Santa Cruz River Basin (USCRB), a binational USA–Mexico basin, the water resources depend on rainfall-triggered infrequent flow events in ephemeral channels to recharge its storage-limited aquifers. In-situ data from the basin highlight a year-round warming trend since the 1980s and a concerning decline in average precipitation (streamflow) from 1955–2000 to 2001–2020 by 50% (87.6%) and 17% (63%) during the winter and summer, respectively. Binational sustainable management of the basins water resources requires a careful consideration of prospective climatic changes. In this article we review relevant studies with climate projections for the mid-21st century of four weather systems that affect the region’s precipitation. First, the North American Monsoon (NAM) weather system accounts for ~60% of the region’s annual rainfall. The total NAM precipitation is projected to decline while heavy rainfall events are expected to intensify. Second, the frequency of the pacific cold fronts, the region’s prevalent source of winter precipitation, is projected to decline. Third, the frequency and intensity of future atmospheric rivers, a weather system that brings winter rainfall to the region, are projected to increase. Fourth, the frequency and intensity of large eastern pacific tropical cyclones (TC) are expected to increase. On rare occasions, remnants of TC make their way to the USCRB to cause storms with considerable impact on the region’s water resources. In contrast to the high confidence projections for the warming trend to persist throughout the mid-21st century, the precipitation projections of these four weather systems affecting the region encompass large uncertainties and studies have often reported contradicting trends. An added source of uncertainty is that the USCRB is located at the periphery of the four rain-bearing weather systems and small mesoscale changes in these weather systems may have accentuated impacts on their edges. Despite the high uncertainty in the projections of future precipitation, the early 21st century drying trend and the projected mid-21st century decline in precipitation events serve as a pressing call for planning and actions to attain sustainable water resources management that reliably satisfies future demands.
Sharing scientific data and information is often cited within academic literature as an initial step of water cooperation, but the transfer of research findings into policy and practice is often slow and inconsistent. Certain attributes—including salience, credibility, and legitimacy of scientific information; iterative information production; and sociocultural factors—may influence how easily scientific information can be used in management and policymaking. However, transnationality usually complicates these sorts of interactions. Accordingly, we argue that the production of scientific information and transboundary water cooperation build upon each other bidirectionally, each informing and enhancing the other. We employ a case-study analysis of the Transboundary Aquifer Assessment Program (TAAP), a binational collaborative effort for scientific assessment of aquifers shared between Mexico and the United States. Here, information sharing was possible only by first completing a formal, jointly agreed-upon cooperative framework in 2009. This framework resulted in a collaborative science production process, suggesting that the relationship between sharing data and information and transboundary groundwater governance is iterative and self-reinforcing. In keeping with the publication of the TAAP’s first binational scientific report in 2016, we demonstrate the bidirectional relationship between science production and water governance in the TAAP and explore remaining challenges after scientific assessment.
The impact of climate uncertainties is already evident in the border communities of the United States and Mexico. This semi-arid to arid border region has faced increased vulnerability to water scarcity, propelled by droughts, warming atmosphere, population growth, ecosystem sensitivity, and institutional asymmetries between the two countries. In this study, we assessed the annual water withdrawal, which is essential for maintaining long-term sustainable conditions in the Santa Cruz River Aquifer in Mexico, which is part of the U.S.–Mexico Transboundary Santa Cruz Aquifer. For this assessment, we developed a water balance model that accounts for the water fluxes into and out of the aquifer’s basin. A central component of this model is a hydrologic model that uses precipitation and evapotranspiration demand as input to simulate the streamflow into and out of the basin, natural recharge, soil moisture, and actual evapotranspiration. Based on the precipitation record for the period 1954–2020, we found that the amount of groundwater withdrawal that maintains sustainable conditions is 23.3 MCM/year. However, the record is clearly divided into two periods: a wet period, 1965–1993, in which the cumulative surplus in the basin reached ~380 MCM by 1993, and a dry period, 1994–2020, in which the cumulative surplus had been completely depleted. Looking at a balanced annual groundwater withdrawal for a moving average of 20-year intervals, we found the sustainable groundwater withdrawal to decline from a maximum of 36.4 MCM/year in 1993 to less than 8 MCM/year in 2020. This study underscores the urgency for adjusted water resources management that considers the large inter-annual climate variability in the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.