A cerebrovascular accident (CVA) may affect basic motor functions, including spasticity that may be present in the upper extremity and/or the lower extremity, post-stroke. Spasticity causes pain, muscle force reduction, and decreases the time to onset of muscle fatigue. Several therapeutic resources have been employed to treat CVA to promote functional recovery. The clinical use of low-level laser therapy (LLLT) for rehabilitation of muscular disorders has provided better muscle responses. Thus, the aim of this study was to evaluate the effect of the application of LLLT in spastic muscles in patients with spasticity post-CVA. A double-blind clinical trial was conducted with 15 volunteer stroke patients who presented with post-stroke spasticity. Both males and females were treated; the average age was 51.5 ± 11.8 years old; the participants entered the study ranging from 11 to 48 months post-stroke onset. The patients participated in three consecutive phases (control, placebo, and real LLLT), in which all tests of isometric endurance of their hemiparetic lower limb were performed. LLLT (diode laser, 100 mW 808 nm, beam spot area 0.0314 cm(2), 127.39 J/cm(2)/point, 40 s) was applied before isometric endurance. After the real LLLT intervention, we observed significant reduction in the visual analogue scale for pain intensity (p = 0.0038), increased time to onset of muscle fatigue (p = 0.0063), and increased torque peak (p = 0.0076), but no significant change in the root mean square (RMS) value (electric signal in the motor unit during contraction, as obtained with surface electromyography). Our results suggest that the application of LLLT may contribute to increased recruitment of muscle fibers and, hence, to increase the onset time of the spastic muscle fatigue, reducing pain intensity in stroke patients with spasticity, as has been observed in healthy subjects and athletes.
The cerebrovascular accident (CVA), high-impact disease II, affects the basic functions of the limbs, leading to changes of sensory, language, and motor functions. The search for resources that minimize the damage caused by this disease grows every day. The clinical use of low-intensity laser therapy (LILT) has provided major breakthroughs in the treatment of muscular disorders and prevention of muscle fatigue. Thus, the objective of the present study is to analyze the answers and immediate adaptations of the rectus femoris and vastus medialis of spastic hemiparetic patients, facing the increase in peak torque and triggering muscle fatigue, after application of LILT. Double-blind clinical trials were conducted with 15 volunteers post-CVA with spasticity, of both genders, between 40 and 80 years old. To this end, the volunteers went through three consecutive stages of rating (control, placebo, and laser). All performed tests of isometric contraction on the patient's hemiparetic side. Significant differences were observed with regard to the increase in muscle performance (p = 0.0043) and the reduction in blood lactate concentration (p < 0.0001) of the post-LILT muscles. The LILT (diode laser, l100 mW 808 nm, 4.77 J/cm(2)/point, 40 s/AP) can be employed during and after spastic muscle-strengthening exercises, contributing to the improvement of motor function of the patient. After application of LILT, we found increased torque as well as decreased in lactate level in patients with spasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.