Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids in cells. PUFAs regulate cellular function through the formation of derived lipid mediators termed eicosanoids. The oxygenation of 20-carbon PUFAs via the oxygenases cyclooxygenases, lipoxygenases, or cytochrome P450, generates a class of classical eicosanoids including prostaglandins, thromboxanes and leukotrienes, and also the more recently identified hydroxy-, hydroperoxy-, epoxy- and oxo-eicosanoids, and the specialized pro-resolving (lipid) mediators. These eicosanoids play a critical role in the regulation of inflammation in the blood and the vessel. While arachidonic acid-derived eicosanoids are extensively studied due to their pro-inflammatory effects and therefore involvement in the pathogenesis of inflammatory diseases such as atherosclerosis, diabetes mellitus, hypertension, and the coronavirus disease 2019; in recent years, several eicosanoids have been reported to attenuate exacerbated inflammatory responses and participate in the resolution of inflammation. This review focused on elucidating the biosynthesis and the mechanistic signaling of eicosanoids in inflammation, as well as the pro-inflammatory and anti-inflammatory effects of these eicosanoids in the blood and the vascular wall.
AIMTo evaluate novel risk factors and biomarkers of cardiovascular disease in celiac disease (CD) patients compared with healthy controls.METHODSTwenty adult patients with recent diagnosis of CD and 20 sex, age and body mass index-matched healthy controls were recruited during a period of 12 mo. Indicators of carbohydrate metabolism, hematological parameters and high sensitive C reactive protein were determined. Moreover, lipoprotein metabolism was also explored through evaluation of the lipid profile and the activity of cholesteryl ester transfer protein and lipoprotein associated phospholipase A2, which is also considered a specific marker of vascular inflammation. The protocol was approved by the Ethic Committee from School of Pharmacy and Biochemistry, University of Buenos Aires and from Buenos Aires Italian Hospital, Buenos Aires, Argentina.RESULTSRegarding the indicators of insulin resistance, CD patients showed higher plasma insulin levels [7.2 (5.0-11.3) mU/L vs 4.6 (2.6-6.7) mU/L, P < 0.05], increased Homeostasis Model Assessment-Insulin Resistance [1.45 (1.04-2.24) vs 1.00 (0.51-1.45), P < 0.05] and lower Quantitative Sensitive Check index [0.33 (0.28-0.40) vs 0.42 (0.34-0.65), P < 0.05] indexes. Folic acid concentration [5.4 (4.4-7.9) ng/mL vs 12.2 (8.0-14.2) ng/mL, P < 0.01] resulted to be lower and High-sensitivity C reactive protein levels higher (4.21 ± 6.47 mg/L vs 0.98 ± 1.13 mg/L, P < 0.01) in the patient group. With respect to the lipoprotein profile, CD patients showed lower high density lipoprotein-cholesterol (HDL-C) (45 ± 15 mg/dL vs 57 ± 17 mg/dL, P < 0.05) and apo A-I (130 ± 31 mg/dL vs 155 ± 29 mg/dL, P < 0.05) levels, as well as higher total cholesterol/HDL-C [4.19 (3.11-5.00) vs 3.52 (2.84-4.08), P < 0.05] and apo B/apo A-I (0.75 ± 0.25 vs 0.55 ± 0.16, P < 0.05) ratios in comparison with control subjects. No statistically significant differences were detected in lipoprotein-associated lipid transfer protein and enzymes.CONCLUSIONThe presence and interaction of the detected alterations in patients with CD, would constitute a risk factor for the development of atherosclerotic cardiovascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.