This study describes the synthesis of three new tetra‐ and octa‐thio‐pyridinium phthalocyanine derivatives. PSs 3a and 4a were prepared from the tetramerization of phthalonitriles 1 and 2, respectively, whereas PS 5 was prepared from the nucleophilic substitution of the 8 beta fluor atoms of hexadecafluorophthalocyaninatozinc(II) by mercaptopyridine, followed by cationization. The recombinant bioluminescent Escherichia coli strain was used to assess, in real time, the photoinactivation efficiency of these cationic phthalocyanines, under white and red light. The cellular localization and uptake were also determined to assess the potential of the new phthalocyanines as antibacterial agents. Derivative 3a was the most effective PS, causing a 5 logs reduction in bioluminescence after 30 min of irradiation under white or red lights. The photoinactivation efficiency of the phthalocyanine 4a was similar (5 logs reduction in bioluminescence) to that of 3a when irradiated with white light, but the efficiency of inactivation was reduced (2.1 logs reduction in bioluminescence) under red light. The tetra‐substituted phthalocyanine 3a also generates high amounts of singlet oxygen, does not aggregate in PBS and is highly fluorescent, which makes it an effective PS and a promising fluorescent labeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.