Social learning is an extension to evolutionary algorithms that enables agents to learn from observations of others in the population. Historically, social learning algorithms have employed a student-teacher model where the behavior of one or more high-fitness agents is used to train a subset of the remaining agents in the population. This paper presents ESL, an egalitarian model of social learning in which agents are not labeled as teachers or students, instead allowing any individual receiving a sufficiently high reward to teach other agents to mimic its recent behavior. We validate our approach through a series of experiments in a robot foraging domain, including comparisons of egalitarian social learning with baseline neuroevolution and a variant of studentteacher social learning. In a complex foraging task, ESL converges to near-optimal strategies faster than either benchmark approach, outperforming both by more than an order of magnitude. The results indicate that egalitarian social learning is a promising new paradigm for social learning in intelligent agents.
Intelligent tutoring systems (ITSs) provide students with a one-on-one tutor, allowing them to work at their own pace, and helping them to focus on their weaker areas. The RUR1–Python Learning Environment (RUR-PLE), a game-like virtual environment to help students learn to program, provides an interface for students to write their own Python code and visualize the code execution (Roberge 2005). RUR-PLE provides a fixed sequence of learning lessons for students to explore. We are extending RUR-PLE to develop the Playing to Program (PtP) ITS, which consists of three components: (1) a Bayesian student model that tracks student competence, (2) a diagnosis module that provides tailored feedback to students, and (3) a problem selection module that guides the student’s learning process. In this paper, we summarize RUR-PLE and the PtP design, and describe an ongoing user study to evaluate the predictive accuracy of our student modeling approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.