In vitro incubation of nanomaterials with plasma offer insights on biological interactions, but cannot fully explain the in vivo fate of nanomaterials. Here, we use a library of polymer nanoparticles to show how physicochemical characteristics influence blood circulation and early distribution. For particles with different diameters, surface hydrophilicity appears to mediate early clearance. Densities above a critical value of approximately 20 poly(ethylene glycol) chains (MW 5 kDa) per 100 nm2 prolong circulation times, irrespective of size. In knockout mice, clearance mechanisms are identified for nanoparticles with low and high steric protection. Studies in animals deficient in the C3 protein showed that complement activation could not explain differences in the clearance of nanoparticles. In nanoparticles with low poly(ethylene glycol) coverage, adsorption of apolipoproteins can prolong circulation times. In parallel, the low-density-lipoprotein receptor plays a predominant role in the clearance of nanoparticles, irrespective of poly(ethylene glycol) density. These results further our understanding of nanopharmacology.
Worm-like and spherical micelles are both prepared here from the same amphiphilic diblock copolymer, poly(ethylene oxide)-b-poly (ε-caprolactone) (PEO [5 kDa]-PCL [6.5 kDa]) in order to compare loading and delivery of hydrophobic drugs. Worm-like micelles of this degradable copolymer are nanometers in crosssection and spontaneously assemble to stable lengths of microns, resembling filoviruses in some respects and thus suggesting the moniker "filomicelles". The highly flexible worm-like micelles can also be sonicated to generate kinetically stable spherical micelles composed of the same copolymer. The fission process exploits the finding that the PCL cores are fluid, rather than glassy or crystalline, and core-loading of the hydrophobic anticancer drug delivery, paclitaxel (TAX) shows that the worm-like micelles load and solubilize twice as much drug as spherical micelles. In cytotoxicity tests that compare to the clinically prevalent solubilizer, Cremophor® EL, both micellar carriers are far less toxic, and both types of TAX-loaded micelles also show 5-fold greater anticancer activity on A549 human lung cancer cells. PEO-PCL based worm-like filomicelles appear to be promising pharmaceutical nanocarriers with improved solubilization efficiency and comparable stability to spherical micelles, as well as better safety and efficacy in vitro compared to the prevalent Cremophor® EL TAX formulation.
AUTHOR'S PROOFMetadata of the article that will be visualized in OnlineFirst Abstract. Worm-like and spherical micelles are both prepared here from the same amphiphilic diblock 7
Multiple studies highlight the strong prevalence of anti-poly(ethylene glycol) (anti-PEG) antibodies in the general human population. As we develop therapeutic modalities using this polymer, it is increasingly relevant to assess the importance of anti-PEG antibodies on biological performances. Here, we show that the anti-PEG Immunoglobulin M (IgM) raised in mice following the injection of polymeric nanoparticles could have significant neutralizing effects on subsequent doses of PEGylated nanosystems in vivo. The circulation times of PEGylated nanoparticles and liposomes were strongly reduced in animals with circulating anti-PEG IgMs, irrespective of the PEG density or the surface properties of the system. In comparison, despite that anti-PEG IgMs could bind free methoxy-terminated PEG and PEGylated bovine serum albumin, the circulation kinetics of these systems remained unaltered in the presence of antibodies. The binding of IgMs to the PEGylated surface of nanoparticles alters the nature of the proteins adsorbed in the surrounding corona, notably due to the activation of the complement cascade. These changes are responsible for the observed differences in circulation times. In comparison, the PEG-BSA is unable to activate complement, even in the presence of anti-PEG IgMs. These results inform on how anti-PEG antibodies can affect the fate of PEGylated nanomaterials and highlight how the architecture of nanoparticles impacts the deposition of the protein corona.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.