The multi-objective problem of multi-depot vehicle routing (MOMDVRP) is proposed by considering the minimization of the traveled arc costs and the balance of routes. Seven mathematical models were reviewed to determine the route balance equation and the bestperforming model is selected for this purpose. The solution methodology consists of three stages; in the first one, beginning solutions are built up by means of a constructive heuristic. In the second stage, fronts are constructed from each starting solution using the iterated local search multi-objective metaheuristics (ILSMO). In the third stage, we obtain a single front by using concepts of dominance, taking as a base the fronts of the previous stage. Thus, the first two fronts are taken and a single front is formed that corresponds to the current solution of the problem; next the third front is added to the current Pareto front of the problem, the procedure is repeated until exhaustion of the list of the fronts initially obtained. The resulting front is the solution to the problem. To validate the methodology we use instances from the specialized literature, which have been used for the multi-depot routing problem (MDVRP). The results obtained provide very good quality. Finally, decision criteria are used to select the most appropriate solution for the front, both from the point of view of the balance and the route cost.
Vehicle routing problems (VRPs) have usually been studied with a single objective function defined by the distances associated with the routing of vehicles. The central problem is to design a set of routes to meet the demands of customers at minimum cost. However, in real life, it is necessary to take into account other objective functions, such as social functions, which consider, for example, the drivers' workload balance. This has led to growth in both the formulation of multiobjective models and exact and approximate solution techniques. In this article, to verify the quality of the results, first, a mathematical model is proposed that takes into account both economic and work balance objectives simultaneously and is solved using an exact method based on the decomposition approach. This method is used to compare the accuracy of the proposed approximate method in test cases of medium mathematical complexity. Second, an approximate method based on the Iterated Local Search (ILS) metaheuristic and Decomposition (ILS/D) is proposed to solve the biobjective Capacitated VRP (bi-CVRP) using test cases of medium and high mathematical complexity. Finally, the nondominated sorting genetic algorithm (NSGA-II) approximate method is implemented to compare both medium- and high-complexity test cases with a benchmark. The obtained results show that ILS/D is a promising technique for solving VRPs with a multiobjective approach.
En este artículo se propone una metodología para resolver el problema de ruteo considerando múltiples depósitos (MDVRP). El modelo contempla situaciones con y sin restricción de distancia. En el proceso de búsqueda se aceptan soluciones infactibles por sobrecarga en vehículos, depósitos y longitud de ruta, las cuales son llevadas como penalidades en la función objetivo. Para su solución es implementado el algoritmo de Búsqueda Local Iterada (Iterated Local Search). En la construcción de la solución inicial se usan heurísticas basadas en técnicas de clusterización. La metodología es verificada usando casos de prueba de la literatura, los resultados obtenidos y tiempos de cómputo son comparados con los registros existentes.
El problema de ruteo de vehículos considerando múltiples depósitos es clasificado como NP duro, cuya solución busca determinar simultáneamente las rutas de un conjunto de vehículos, atendiendo un conjunto de clientes con una demanda determinada. La función objetivo del problema consiste en minimizar el total de la distancia recorrida por las rutas, teniendo en cuenta que todos los clientes deben ser atendidos cumpliendo restricciones de capacidad de depósitos y vehículos. En este artículo se propone una metodología híbrida que combina las técnicas aglomerativas de clusterización para generar soluciones iniciales con un algoritmo de búsqueda local iterada, iterated location search (ILS) para resolver el problema. Aunque en trabajos previos se proponen los métodos de clusterización como estrategias para generar soluciones de inicio, en este trabajo se potencia la búsqueda sobre el sistema de información obtenido después de aplicar el método de clusterización. Además se realiza un extenso análisis sobre el desempeño de las técnicas de clusterización y su impacto en el valor de la función objetivo. El desempeño de la metodología propuesta es factible y efectivo para resolver el problema en cuanto a la calidad de las respuestas y los tiempos computacionales obtenidos, sobre las instancias de la literatura evaluadas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.