Third generation cephalosporins and carbapenems are considered critically important antimicrobials in human medicine. Food animals such as swine can act as reservoirs of antimicrobial resistance (AMR) genes/bacteria resistant to these antimicrobial classes, and potential dissemination of AMR genes or resistant bacteria from pigs to humans is an ongoing public health threat. The objectives of this systematic review and meta-analysis were to: (1) estimate global proportion and animal-level prevalence of swine E. coli phenotypically resistant to third generation cephalosporins (3GCs) and carbapenems at a country level; and (2) measure abundances and global distribution of the genetic mechanisms that confer resistance to these antimicrobial classes in these E. coli isolates. Articles from four databases (CAB Abstracts, PubMed/MEDLINE, PubAg, and Web of Science) were screened to extract relevant data. Overall, proportion of E. coli resistant to 3GCs was lower in Australia, Europe, and North America compared to Asian countries. Globally, <5% of all E. coli were carbapenem-resistant. Fecal carriage rates (animal-level prevalence) were consistently manifold higher as compared to pooled proportion of resistance in E. coli isolates. blaCTX–M were the most common 3GC resistance genes globally, with the exception of North America where blaCMY were the predominant 3GC resistance genes. There was not a single dominant blaCTX–M gene subtype globally and several blaCTX–M subtypes were dominant depending on the continent. A wide variety of carbapenem-resistance genes (blaNDM–, VIM–, IMP–, OXA–48, andKPC–) were identified to be circulating in pig populations globally, albeit at very-low frequencies. However, great statistical heterogeneity and a critical lack of metadata hinders the true estimation of prevalence of phenotypic and genotypic resistance to these antimicrobials. Comparatively frequent occurrence of 3GC resistance and emergence of carbapenem resistance in certain countries underline the urgent need for improved AMR surveillance in swine production systems in these countries.
BackgroundFluoroquinolones and polymyxins (colistin) are considered as critical drugs for human medicine. Antimicrobials of these classes are also used in swine production worldwide and this usage can contribute to selection of antimicrobial resistance (AMR), which is a threat to both human and animal health. Given the dynamic epidemiology of AMR, updating our knowledge regarding distribution and trends in the proportion of resistant bacteria is of critical importance.ObjectivesThe aim of this systematic review and meta-analysis was to describe the global prevalence of phenotypic and genotypic resistance to fluoroquinolones and colistin in Escherichia coli collected from swine.ResultsFour databases (PubMed, PubAg, Web of Science, and CAB abstracts) and reports of national surveillance programs were scanned and 360 articles were included in the analysis. We identified higher prevalence levels of fluoroquinolone and colistin resistance in isolates from pig populations in Asia compared to Europe. The heterogeneity of pooled estimates was also higher in Asian countries suggesting that prevalence of AMR is still not fully characterized. There was a major knowledge gap about the situation of AMR in South American and African countries. We also identified key deficiencies in how AMR data was reported in the studies. A meta-analysis using 6,167 publicly available genomes of swine E. coli established the prevalence and global distribution of genetic determinants that can lead to fluoroquinolone and colistin resistance.ConclusionThis study provides the most comprehensive information on prevalence of phenotypic and genotypic resistance to key antimicrobials in pig populations globally. There is a need to establish national surveillance programs and effective policies, particularly in certain world regions, to curtail the threat of evolution of resistant isolates in swine production that can potentially contribute to public health detrimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.