Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.
Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (cGMP) signaling, phosphodiesterase (PDE) 1 and 5, transcription factor NF-E2-related factor-2 (Nrf2), and diet restriction.
To investigate the role of epigenetics in statins' diabetogenic effect comparing DNA methylation (DNAm) between statin users and nonusers in an epigenome-wide association study in blood. RESEARCH DESIGN AND METHODSFive cohort studies' participants (n 5 8,270) were classified as statin users when they were on statin therapy at the time of DNAm assessment with Illumina 450K or EPIC array or noncurrent users otherwise. Associations of DNAm with various outcomes like incident type 2 diabetes, plasma glucose, insulin, and insulin resistance (HOMA of insulin resistance [HOMA-IR]) as well as with gene expression were investigated. RESULTS Discovery(n 5 6,820) and replication (n 5 1,450) phases associated five DNAm sites with statin use: cg17901584 (1.12 3 10 225 [DHCR24]), cg10177197 (3.94 3 10 208 [DHCR24]), cg06500161 (2.67 3 10 223 [ABCG1]), cg27243685 (6.01 3 10 209 [ABCG1]), and cg05119988 (7.26 3 10 212 [SC4MOL]). Two sites were associated with at least one glycemic trait or type 2 diabetes. Higher cg06500161 methylation was associated with higher fasting glucose, insulin, HOMA-IR, and type 2 diabetes (odds ratio 1.34 [95% CI 1.22, 1.47]). Mediation analyses suggested that ABCG1 methylation partially mediates the effect of statins on high insulin and HOMA-IR. Gene expression analyses showed that statin exposure and ABCG1 methylation were associated with ABCG1 downregulation, suggesting epigenetic regulation of ABCG1 expression. Further, outcomes insulin and HOMA-IR were significantly associated with ABCG1 expression. CONCLUSIONSThis study sheds light on potential mechanisms linking statins with type 2 diabetes risk, providing evidence on DNAm partially mediating statins' effects on insulin traits. Further efforts shall disentangle the molecular mechanisms through which statins may induce DNAm changes, potentially leading to ABCG1 epigenetic regulation.Statins effectively reduce the risk of cardiovascular disease (1). However, clinical trials and observational studies show that statins lead to insulin resistance and type 2 diabetes (2,3). The underlying mechanisms remain unclear.Statins are associated with epigenetic changes, including histone acetylation, miRNA regulation (4), and DNA methylation (DNAm), particularly at genes related to lipid and insulin metabolism (5). DNAm is linked to type 2 diabetes pathophysiology (6); thus, it may be a potential mechanism contributing to the increased risk of type 2
Epigenetic mechanisms have been suggested to play a role in the genetic regulation of pathways related to inflammation. Therefore, we aimed to systematically review studies investigating the association between DNA methylation and histone modifications with circulatory inflammation markers in blood. Five bibliographic databases were screened until 21 November of 2017. We included studies conducted on humans that examined the association between epigenetic marks (DNA methylation and/or histone modifications) and a comprehensive list of inflammatory markers. Of the 3,759 identified references, 24 articles were included, involving, 17,399 individuals. There was suggestive evidence for global hypomethylation but better-quality studies in the future have to confirm this. Epigenome-wide association studies (EWAS) (n=7) reported most of the identified differentially methylated genes to be hypomethylated in inflammatory processes. Candidate genes studies reported 18 differentially methylated genes related to several circulatory inflammation markers. There was no overlap in the methylated sites investigated in candidate gene studies and EWAS, except for TMEM49, which was found to be hypomethylated with higher inflammatory markers in both types of studies. The relation between histone modifications and inflammatory markers was assessed by one study only. This review supports an association between epigenetic marks and inflammation, suggesting hypomethylation of the genome. Important gaps in the quality of studies were reported such as inadequate sample size, lack of adjustment for relevant confounders, and failure to replicate the findings. While most of the studies have been focused on C-reactive protein, further efforts should investigate other inflammatory markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.