A green, template-free and easy-to-implement strategy was developed to access holey g-C N (GCN) nanosheets doped with carbon. The protocol involves heating dicyandiamide with β-cyclodextrin (βCD) prior to polymerization. The local symmetry of the GCN skeleton is broken, yielding CxGCN (x corresponds to the initial amount of βCD used) with pores and a distorted structure. The electronic, emission, optical and textural properties of the best-performing material, C2GCN, were significantly modified as compared to bulk GCN. The spectroscopic and luminescent features of C2GCN show the characteristic π-π* electronic transition of GCN, accompanied by much stronger n-π* electronic transitions owing to the porous and distorted network. These new electronic transitions, along with the presence of additional carbon synergistically contributed to enhanced visible light absorption and restrained recombination of electron-hole pairs. Steady-state and time-resolved photoluminescence showed an effective quench of the fluorescence emission, accompanied by a decrease of fluorescence lifetime of C2GCN (2.20 ns) in comparison with GCN (5.85 ns), owing to the delocalization of electron and holes to new recombination centers. The photocatalytic activity of C2GCN was attributed to efficient charge carrier separation and improved visible-light absorbing ability. As result, C2GCN exhibited ∼5 times higher photocatalytic H generation under visible light than bulk GCN.
The photochemical degradation of 2-(1-naphthyl) acetamide (NAD) in aqueous solution using simulated sunlight excitation as well as UV light within the 254-300 nm range was investigated to obtain an insight into the transformation mechanism that could occur under environmental conditions. Several photoproducts were identified using HPLC/MS/MS techniques. The degradation quantum yield was found to be independent of the excitation wavelength, but showed a dependence of oxygen concentration. This increased by a factor of approximately 3 from aerated to oxygen-free solutions. There is a clear involvement of both triplet and singlet excited states in NAD photoreactivity. The participation of singlet oxygen as a significant route in NAD degradation was ruled out by comparison with the behavior using Rose Bengal as a photosensitizer. A mechanistic pathway implying hydroxylation process through NAD radical cation species as well as an oxidation reaction by molecular oxygen is proposed. The photochemical behavior of NAD appears to mainly involve the aromatic moieties without any participation of the amide side chain. Toxicity tests clearly show that the generated primary photoproducts are responsible for a significant increase in the toxicity. However, upon prolonged irradiation this toxicity tends to decrease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.