We introduce a new approach to apply the boosted difference of convex functions algorithm (BDCA) for solving non-convex and non-differentiable problems involving difference of two convex functions (DC functions). Supposing the first DC component differentiable and the second one possibly non-differentiable, the main idea of BDCA is to use the point computed by the DC algorithm (DCA) to define a descent direction and perform a monotone line search to improve the decreasing the objetive function accelerating the convergence of the DCA. However, if the first DC component is non-differentiable, then the direction computed by BDCA can be an ascent direction and a monotone line search cannot be performed. Our approach uses a non-monotone line search in the BDCA (nmBDCA) to enable a possible growth in the objective function values controlled by a parameter. Under suitable assumptions, we show that any cluster point of the sequence generated by the nmBDCA is a critical point of the problem under consideration and provide some iteration-complexity bounds. Furthermore, if the first DC component is differentiable, we present different iteration-complexity bounds and prove the full convergence of the sequence under the Kurdyka-Lojasiewicz property of the objective function. Some numerical experiments show that the nmBDCA outperforms the DCA such as its monotone version.
In this paper we propose a Riemannian version of the difference of convex algorithm (DCA) to solve a minimization problem involving the difference of convex (DC) function. Equivalence between the classical and a simplified Riemannian version of the DCA is stablished. We also prove that under mild assumptions the Riemannian version of the DCA is well defined and every cluster point of the sequence generated by the proposed method, if any, is a critical point of the objective DC function. Some duality relations between the DC problem and its dual are also established. Applications to the problem of maximizing a convex function in a compact set and manifold-valued image denoising are presented in the DC context.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.