The generalized extreme value distribution and its particular case, the Gumbel extreme value distribution, are widely applied for extreme value analysis. The Gumbel distribution has certain drawbacks because it is a non-heavy-tailed distribution and is characterized by constant skewness and kurtosis. The generalized extreme value distribution is frequently used in this context because it encompasses the three possible limiting distributions for a normalized maximum of infinite samples of independent and identically distributed observations. However, the generalized extreme value distribution might not be a suitable model when each observed maximum does not come from a large number of observations. Hence, other forms of generalizations of the Gumbel distribution might be preferable. Our goal is to collect in the present literature the distributions that contain the Gumbel distribution embedded in them and to identify those that have flexible skewness and kurtosis, are heavy-tailed and could be competitive with the generalized extreme value distribution. The generalizations of the Gumbel distribution are described and compared using an application to a wind speed data set and Monte Carlo simulations. We show that some distributions suffer from overparameterization and coincide with other generalized Gumbel distributions with a smaller number of parameters, i.e., are non-identifiable. Our study suggests that the generalized extreme value distribution and a mixture of two extreme value distributions should be considered in practical applications.
We deal with a general class of extreme-value regression models introduced by Barreto-Souza and Vasconcelos (2011). Our goal is to derive an adjusted likelihood ratio statistic that is approximately distributed as χ 2 with a high degree of accuracy. Although the adjusted statistic requires more computational effort than its unadjusted counterpart, it is shown that the adjustment term has a simple compact form that can be easily implemented in standard statistical software. Further, we compare the finite sample performance of the three classical tests (likelihood ratio, Wald, and score), the gradient test that has been recently proposed by Terrell (2002), and the adjusted likelihood ratio test obtained in this paper. Our simulations favor the latter. Applications of our results are presented.
We derive adjusted signed likelihood ratio statistics for a general class of extreme value regression models. The adjustments reduce the error in the standard normal approximation to the distribution of the signed likelihood ratio statistic. We use Monte Carlo simulations to compare the finite-sample performance of the different tests. Our simulations suggest that the signed likelihood ratio test tends to be liberal when the sample size is not large, and that the adjustments are effective in shrinking the size distortion. Two real data applications are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.