High animal and plant richness in tropical rainforest communities has long intrigued naturalists. It is unknown if similar hyperdiversity patterns are reflected at the microbial scale with unicellular eukaryotes (protists). Here we show, using environmental metabarcoding of soil samples and a phylogeny-aware cleaning step, that protist communities in Neotropical rainforests are hyperdiverse and dominated by the parasitic Apicomplexa, which infect arthropods and other animals. These host-specific parasites potentially contribute to the high animal diversity in the forests by reducing population growth in a density-dependent manner. By contrast, too few operational taxonomic units (OTUs) of Oomycota were found to broadly drive high tropical tree diversity in a host-specific manner under the Janzen-Connell model. Extremely high OTU diversity and high heterogeneity between samples within the same forests suggest that protists, not arthropods, are the most diverse eukaryotes in tropical rainforests. Our data show that protists play a large role in tropical terrestrial ecosystems long viewed as being dominated by macroorganisms.S ince the works of early naturalists such as von Humboldt and Bonpland 1 , we have known that animal and plant communities in tropical rainforests are exceedingly species rich. For example, one hectare can contain more than 400 tree species 2 and one tree can harbour more than 40 ant species 3 . This hyperdiversity of trees has been partially explained by the Janzen-Connell model 4,5 , which hypothesizes that host-specific predators and parasites reduce plant population growth in a density-dependent manner 6,7 . Sampling up in the tree canopies and below on the ground has further led to the view that arthropods are the most diverse eukaryotes in tropical rainforests 8,9 .The focus on eukaryotic macroorganisms in these studies is primarily because they are familiar and readily observable to us. We do not know whether the less familiar and less readily observable protists-microbial eukaryotes that are not animals, plants or fungi 10 -inhabiting these same ecosystems exhibit similar diversity patterns. To evaluate if macroorganismic diversity patterns are reflected at the microbial scale with protists, we conducted an environmental DNA metabarcoding study by sampling soils in 279 locations in a variety of lowland Neotropical forest types in La Selva Biological Station, Costa Rica, Barro Colorado Island, Panama and Tiputini Biodiversity Station, Ecuador. This metabarcoding approach has the power to uncover known and new taxa on a massive scale 11 . By amplifying DNA extracted from the soils with broadly targeted primers for the V4 region of 18S rRNA and sequencing it using the Illumina MiSeq platform, we were able to detect most eukaryotic lineages, and assess the diversity and relative dominance of free-living and parasitic lineages.
Next generation sequencing of ribosomal DNA is increasingly used to assess the diversity and structure of microbial communities. Here we test the ability of 454 pyrosequencing to detect the number of species present, and assess the relative abundance in terms of cell numbers and biomass of protists in the phylum Haptophyta. We used a mock community consisting of equal number of cells of 11 haptophyte species and compared targeting DNA and RNA/cDNA, and two different V4 SSU rDNA haptophyte-biased primer pairs. Further, we tested four different bioinformatic filtering methods to reduce errors in the resulting sequence dataset. With sequencing depth of 11000–20000 reads and targeting cDNA with Haptophyta specific primers Hap454 we detected all 11 species. A rarefaction analysis of expected number of species recovered as a function of sampling depth suggested that minimum 1400 reads were required here to recover all species in the mock community. Relative read abundance did not correlate to relative cell numbers. Although the species represented with the largest biomass was also proportionally most abundant among the reads, there was generally a weak correlation between proportional read abundance and proportional biomass of the different species, both with DNA and cDNA as template. The 454 sequencing generated considerable spurious diversity, and more with cDNA than DNA as template. With initial filtering based only on match with barcode and primer we observed 100-fold more operational taxonomic units (OTUs) at 99% similarity than the number of species present in the mock community. Filtering based on quality scores, or denoising with PyroNoise resulted in ten times more OTU99% than the number of species. Denoising with AmpliconNoise reduced the number of OTU99% to match the number of species present in the mock community. Based on our analyses, we propose a strategy to more accurately depict haptophyte diversity using 454 pyrosequencing.
Microalgae in the division Haptophyta play key roles in the marine ecosystem and in global biogeochemical processes. Despite their ecological importance, knowledge on seasonal dynamics, community composition and abundance at the species level is limited due to their small cell size and few morphological features visible under the light microscope. Here, we present unique data on haptophyte seasonal diversity and dynamics from two annual cycles, with the taxonomic resolution and sampling depth obtained with high-throughput sequencing. From outer Oslofjorden, S Norway, nano- and picoplanktonic samples were collected monthly for 2 years, and the haptophytes targeted by amplification of RNA/cDNA with Haptophyta-specific 18S rDNA V4 primers. We obtained 156 operational taxonomic units (OTUs), from c. 400.000 454 pyrosequencing reads, after rigorous bioinformatic filtering and clustering at 99.5%. Most OTUs represented uncultured and/or not yet 18S rDNA-sequenced species. Haptophyte OTU richness and community composition exhibited high temporal variation and significant yearly periodicity. Richness was highest in September–October (autumn) and lowest in April–May (spring). Some taxa were detected all year, such as Chrysochromulina simplex, Emiliania huxleyi and Phaeocystis cordata, whereas most calcifying coccolithophores only appeared from summer to early winter. We also revealed the seasonal dynamics of OTUs representing putative novel classes (clades HAP-3–5) or orders (clades D, E, F). Season, light and temperature accounted for 29% of the variation in OTU composition. Residual variation may be related to biotic factors, such as competition and viral infection. This study provides new, in-depth knowledge on seasonal diversity and dynamics of haptophytes in North Atlantic coastal waters.
Haptophytes are a key phylum of marine protists, including~300 described morphospecies and 80 morphogenera. We used 454 pyrosequencing on large subunit ribosomal DNA (LSU rDNA) fragments to assess the diversity from size-fractioned plankton samples collected in the Bay of Naples. One group-specific primer set targeting the LSU rDNA D1/D2 region was designed to amplify Haptophyte sequences from nucleic acid extracts (total DNA or RNA) of two size fractions (0.8-3 or 3-20 lm) and two sampling depths [subsurface, at 1 m, or deep chlorophyll maximum (DCM) at 23 m]. 454 reads were identified using a database covering the entire Haptophyta diversity currently sequenced. Our data set revealed several hundreds of Haptophyte clusters. However, most of these clusters could not be linked to taxonomically known sequences: considering OTUs 97% (clusters build at a sequence identity level of 97%) on our global data set, less than 1% of the reads clustered with sequences from cultures, and less than 12% clustered with reference sequences obtained previously from cloning and Sanger sequencing of environmental samples. Thus, we highlighted a large uncharacterized environmental genetic diversity, which clearly shows that currently cultivated species poorly reflect the actual diversity present in the natural environment. Haptophyte community appeared to be significantly structured according to the depth. The highest diversity and evenness were obtained in samples from the DCM, and samples from the large size fraction (3-20 lm) taken at the DCM shared a lower proportion of common OTUs 97% with the other samples. Reads from the species Chrysoculter romboideus were notably found at the DCM, while they could be detected at the subsurface. The highest proportion of totally unknown OTUs 97% was collected at the DCM in the smallest size fraction (0.8-3 lm). Overall, this study emphasized several technical and theoretical barriers inherent to the exploration of the large and largely unknown diversity of unicellular eukaryotes.
Microalgae in the division Haptophyta may be difficult to identify to species by microscopy because they are small and fragile. Here, we used high-throughput sequencing to explore the diversity of haptophytes in outer Oslofjorden, Skagerrak, and supplemented this with electron microscopy. Nano- and picoplanktonic subsurface samples were collected monthly for 2 yr, and the haptophytes were targeted by amplification of RNA/cDNA with Haptophyta-specific 18S ribosomal DNA V4 primers. Pyrosequencing revealed higher species richness of haptophytes than previously observed in the Skagerrak by microscopy. From ca. 400,000 reads we obtained 156 haptophyte operational taxonomic units (OTUs) after rigorous filtering and 99.5% clustering. The majority (84%) of the OTUs matched environmental sequences not linked to a morphological species, most of which were affiliated with the order Prymnesiales. Phylogenetic analyses including Oslofjorden OTUs and available cultured and environmental haptophyte sequences showed that several of the OTUs matched sequences forming deep-branching lineages, potentially representing novel haptophyte classes. Pyrosequencing also retrieved cultured species not previously reported by microscopy in the Skagerrak. Electron microscopy revealed species not yet genetically characterised and some potentially novel taxa. This study contributes to linking genotype to phenotype within this ubiquitous and ecologically important protist group, and reveals great, unknown diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.