Hydrodynamic flame instabilities are studied in a Hele-Shaw burner. By studying the development of perturbations, starting from a 2D Bunsen flame at the top of the burner, growth rates are measured for propane and methane-air mixtures, and compared to theoretical predictions. It is found that the dispersion relation in a Hele-Shaw cell has the same dependence with wavenumber σ = k − k 2 as the one predicted in tubes. Markstein numbers relative to fresh gases are obtained for propane and methane flames and compared to the literature.
We show in this paper that a Hele-Shaw burner can be used for studying the development of premixed flame instabilities in a quasi-two dimensional configuration. It is possible to ignite a plane flame at the top of the cell, and to measure quantitatively the growth rates of the instability by image analysis. Experiments are performed with propane and methane-air mixtures. It is found that the most unstable wavelength, and the maximum linear growth rate of perturbations, directly measured in the present experiments, have the same order of magnitude as those previously measured on flames propagating freely downwards in wide tubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.