We review concepts, principles, and tools that unify current approaches to causal analysis and attend to new challenges presented by big data. In particular, we address the problem of data fusionpiecing together multiple datasets collected under heterogeneous conditions (i.e., different populations, regimes, and sampling methods) to obtain valid answers to queries of interest. The availability of multiple heterogeneous datasets presents new opportunities to big data analysts, because the knowledge that can be acquired from combined data would not be possible from any individual source alone. However, the biases that emerge in heterogeneous environments require new analytical tools. Some of these biases, including confounding, sampling selection, and cross-population biases, have been addressed in isolation, largely in restricted parametric models. We here present a general, nonparametric framework for handling these biases and, ultimately, a theoretical solution to the problem of data fusion in causal inference tasks.causal inference | counterfactuals | external validity | selection bias | transportability
The generalizability of empirical findings to new environments, settings or populations, often called "external validity," is essential in most scientific explorations. This paper treats a particular problem of generalizability, called "transportability," defined as a license to transfer causal effects learned in experimental studies to a new population, in which only observational studies can be conducted. We introduce a formal representation called "selection diagrams" for expressing knowledge about differences and commonalities between populations of interest and, using this representation, we reduce questions of transportability to symbolic derivations in the do-calculus. This reduction yields graph-based procedures for deciding, prior to observing any data, whether causal effects in the target population can be inferred from experimental findings in the study population. When the answer is affirmative, the procedures identify what experimental and observational findings need be obtained from the two populations, and how they can be combined to ensure bias-free transport.
We address the problem of transferring information learned from experiments to a different environment, in which only passive observations can be collected. We introduce a formal representation called "selection diagrams" for expressing knowledge about differences and commonalities between environments and, using this representation, we derive procedures for deciding whether effects in the target environment can be inferred from experiments conducted elsewhere. When the answer is affirmative, the procedures identify the set of experiments and observations that need be conducted to license the transport. We further discuss how transportability analysis can guide the transfer of knowledge in non-experimental learning to minimize re-measurement cost and improve prediction power.
Generalizing empirical findings to new environments, settings, or populations is essential in most scientific explorations. This article treats a particular problem of generalizability, called "transportability", defined as a license to transfer information learned in experimental studies to a different population, on which only observational studies can be conducted. Given a set of assumptions concerning commonalities and differences between the two populations, Pearl and Bareinboim [1] derived sufficient conditions that permit such transfer to take place. This article summarizes their findings and supplements them with an effective procedure for deciding when and how transportability is feasible. It establishes a necessary and sufficient condition for deciding when causal effects in the target population are estimable from both the statistical information available and the causal information transferred from the experiments. The article further provides a complete algorithm for computing the transport formula, that is, a way of combining observational and experimental information to synthesize bias-free estimate of the desired causal relation. Finally, the article examines the differences between transportability and other variants of generalizability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.