We work over an o-minimal expansion of a real closed field. The o-minimal homotopy groups of a definable set are defined naturally using definable continuous maps. We prove that any two semialgebraic maps which are definably homotopic are also semialgebraically homotopic. This result together with the study of semialgebraic homotopy done by H. Delfs and M. Knebusch allows us to develop an o-minimal homotopy theory. In particular, we obtain o-minimal versions of the Hurewicz theorems and the Whitehead theorem.
PreliminariesFor the rest of the paper we fix an o-minimal expansion R of a real closed field R. We always take 'definable' to mean 'definable in R with parameters'. We take the order topology on R and the product topology on
In [2] o-minimal homotopy was developed for the definable category, proving o-minimal versions of the Hurewicz theorems and the Whitehead theorem. Here, we extend these results to the category of locally definable spaces, for which we introduce homology and homotopy functors. We also study the concept of connectedness in W -definable groups -which are examples of locally definable spaces. We show that the various concepts of connectedness associated to these groups, which have appeared in the literature, are non-equivalent.
We prove the definability, and actually the finiteness of the commutator width, of many commutator subgroups in groups definable in ominimal structures. It applies in particular to derived series and to lower central series of solvable groups. Along the way, we prove some generalities on groups with the descending chain condition on definable subgroups and/or with a definable and additive dimension.
Abstract. We prove that groups definable in o-minimal structures have Cartan subgroups, and only finitely many conjugacy classes of such subgroups. We also delineate with precision how these subgroups cover the ambient group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.