The rapid increase of electric vehicles (EVs) would lead to a rise in load demand on power grids but create different potential benefits as well. Those benefits comprise EVs serving as a mobile energy storage system to participate in adjusting the load on the power grids and helping manage renewable energy resources. This paper evaluates the effect of dynamic electricity prices and home photovoltaic (PV) system incentives on users’ EVs charging behavior and potential impacts on grid load and household economy. This has been done by establishing and assessing three different optimized charging configurations and comparing them to an uncontrolled charging strategy. In this study, the charging incentives are applied to a representative sample of 100 households with EVs and PV systems in a metropolitan area. The results show that an optimized charging strategy based on the dynamic electricity tariff can reduce charging costs by 18.5%, while a PV-based optimized strategy can reduce the costs by 33.7%. Moreover, the PV-integrated optimization strategies significantly increase the utilization of PV energy by almost 46% on average, compared to uncontrolled charging. In addition, the simulations of this research have depicted the capability of using home PV systems’ incentives to smoothen the charging profiles and hence significantly reduce the maximum grid load. However, the electricity price optimization strategy increases the aggregated charging peaks, which can only be slightly reduced by peak shaving. Therefore, an identical price signal for all households might be critical. Further analyses have shown that direct charging occurs simultaneously with household electricity assigned to a specific low-voltage grid while PV and price incentive charging configurations shift the charging peaks away from household load peaks.
Energy generation and consumption in the power grid must be balanced at every single moment. Within the synchronous area of continental Europe, flexible generators and loads can provide Frequency Containment Reserve and Frequency Restoration Reserve marketed through the balancing markets. The Transmission System Operators use these flexibilities to maintain or restore the grid frequency when there are deviations. This paper shows the future flexibility potential of Germany’s household sector, in particular for single-family and twin homes in 2025 and 2030 with the assumption that households primarily optimize their self-consumption. The primary focus is directed to the flexibility potential of Electric Vehicles, Heat Pumps, Photovoltaics and Battery Storage Systems. A total of 10 different household system configurations were considered and combined in a weighted average based on the scenario framework of the German Grid Development Plan. The household generation, consumption and storage units were simulated in a mixed-integer linear programming model to create the time series for the self-consumption optimized households. This solved the unit commitment problem for each of the decentralized households in their individual configurations. Finally, the individual household flexibilities were evaluated and then aggregated to a Germany-wide flexibility profile for single-family and twin homes. The results indicate that the household sector can contribute significantly to system stabilization with an average potential of 30 negative and 3 positive flexibility in 2025. In 2030, the corresponding flexibilities potentially increase to 90 and 30 , respectively. This underlines that considerable flexibility reserves could be provided by single-family and twin homes in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.