Addressing the surface chemistry of silicon is of fundamental scientific and technical significance due to the wide use of this material in electronics and optics. A novel method of functionalizing silicon (Si) via short peptides with binding specificity for Si is presented. The peptide presenting the highest affinity for Si is identified via phage display technology, and the 12‐mer LLADTTHHRPWT and SPGLSLVSHMQT peptides were found to be specific for the n+‐Si and p+‐Si surfaces, respectively. In our sensing application, the obtained peptides are used as functionalizing linkers to allow porous silicon microcavities to bind biotin and then capture streptavidin. Molecular detection is monitored via reflectometric interference spectra as shifts in the resonance peaks of the cavity structure. An improved streptavidin sensing (21 times lower detection limit) with peptide‐functionalized porous silicon microcavities is demonstrated, compared to sensing performed with devices functionalized with the commonly used silanization method, suggesting that the modification of Si via Si‐specific peptides provides better interface layers for molecular detection. High‐resolution atomic force microscopy images corroborate this result and reveal the formation of ordered nanometer‐sized molecular layers when peptide‐route functionalization is performed.
Functionalization of semiconductors constitutes a crucial step in using these materials for various electronic, photonic, biomedical, and sensing applications. Within the various possible approaches, selection of material-binding biomolecules from a random biological library, based on the natural recognition of proteins or peptides toward specific material, offers many advantages, most notably biocompatibility. Here we report on the selective functionalization of GaN, an important semiconductor that has found broad uses in the past decade due to its efficient electroluminescence and pronounced chemical stability. A 12-mer peptide ("GaN_probe") with specific recognition for GaN has evolved. The subtle interplay of mostly nonpolar hydrophobic and some polar amino acidic residues defines the high affinity adhesion properties of the peptide. The interaction forces between the peptide and GaN are quantified, and the hydrophobic domain of the GaN_probe is identified as primordial for the binding specificity. These nanosized binding blocks are further used for controlled placement of biotin-streptavidin complexes on the GaN surface. Thus, the controlled grow of a new, patterned inorganic-organic hybrid material is achieved. Tailoring of GaN by biological molecules can lead to a new class of nanostructured semiconductor-based devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.