Redox processes are at the heart of universal life processes, such as metabolism, signaling or folding of secreted proteins. Redox landscapes differ between cell compartments and are strictly controlled to tolerate changing conditions and to avoid cell dysfunction. While a sophisticated antioxidant network counteracts oxidative stress, our understanding of reductive stress responses remains fragmentary. Here, we observed root growth impairment in Arabidopsis thaliana mutants of mitochondrial alternative oxidase 1a (aox1a) in response to the model thiol reductant dithiothreitol (DTT). Mutants of mitochondrial uncoupling protein 1 (ucp1) displayed a similar phenotype indicating that impaired respiratory flexibility led to hypersensitivity. Endoplasmic reticulum (ER) stress was enhanced in the mitochondrial mutants and limiting endoplasmic reticulum oxidoreductin (ERO) capacity in the aox1a background led to synergistic root growth impairment by DTT, indicating that mitochondrial respiration alleviates reductive ER stress. The observations that DTT triggered NAD reduction in vivo and that the presence of thiols led to electron transport chain activity in isolated mitochondria offer a biochemical framework of mitochondrion-mediated alleviation of thiol-mediated reductive stress. Ablation of transcription factor ANAC017 impaired the induction of AOX1a expression by DTT and led to DTT hypersensitivity, revealing that reductive stress tolerance is achieved by adjusting mitochondrial respiratory capacity via retrograde signaling. Our data reveal an unexpected role for mitochondrial respiratory flexibility and retrograde signaling in reductive stress tolerance involving inter-organelle redox crosstalk.
A wide range of studies in plant biology are performed using hydroponic cultures. In this work, an in vitro hydroponic growth system designed for assessing plant responses to chemicals and other substances of interest is presented. This system is highly efficient in obtaining homogeneous and healthy seedlings of the C3 and C4 model species Arabidopsis thaliana and Setaria viridis, respectively. The sterile cultivation avoids algae and microorganism contamination, which are known limiting factors for plant normal growth and development in hydroponics. In addition, this system is scalable, enabling the harvest of plant material on a large scale with minor mechanical damage, as well as the harvest of individual parts of a plant if desired. A detailed protocol demonstrating that this system has an easy and low-cost assembly, as it uses pipette racks as the main platform for growing plants, is provided. The feasibility of this system was validated using Arabidopsis seedlings to assess the effect of the drug AZD-8055, a chemical inhibitor of the target of rapamycin (TOR) kinase. TOR inhibition was efficiently detected as early as 30 min after an AZD-8055 treatment in roots and shoots. Furthermore, AZD-8055-treated plants displayed the expected starch-excess phenotype. We proposed this hydroponic system as an ideal method for plant researchers aiming to monitor the action of plant inducers or inhibitors, as well as to assess metabolic fluxes using isotope-labeling compounds which, in general, requires the use of expensive reagents.
Mitochondria act as cellular hubs of energy transformation and metabolite conversion in most eukaryotes. Plant mitochondrial electron transport chains are particularly flexible, featuring alternative components, such as ALTERNATIVE NAD(P)H DEHYDROGENASES and ALTERNATIVE OXIDASES (AOXs), that can bypass proton translocation steps. PLANT UNCOUPLING MITOCHONDRIAL PROTEINS (named PUMPs or plant UCPs) have been identified in plants as homologues of mammalian Uncoupling Proteins (UCPs), and their biochemical and physiological roles have been investigated in the context of mitochondrial energy metabolism. To dissect UCP function in Arabidopsis, the two most conserved (UCP1 and UCP2) have been targeted in recent work by combining mutant lines to circumvent potential functional redundancy in vivo. Such approaches rely on the assumption that both proteins reside in the inner mitochondrial membrane as a prerequisite for functional redundancy. Yet, contradicting results have been reported on UCP2 localization in plants. Here we provide evidence that, conversely to UCP1, which is an abundant inner mitochondrial membrane protein, UCP2 localizes to the Golgi rather than to mitochondria. Based on multiple lines of new and prior evidence, we summarize the consensus view that we have reached and provide an example of how open, critical exchange within the research community is able to constructively address ambiguities. Our observations and considerations provide direction to the ongoing discussion about the functions of UCP proteins. They further offer new perspectives for the study of Golgi membrane transport and subcellular targeting principles of membrane proteins. Since 20 to 30 % of genes in plant genomes are predicted to encode transmembrane proteins and the function of most of those proteins has not been experimentally investigated, we highlight the importance of using independent evidence for localization as a prerequisite for understanding physiological function of membrane proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.