Indoor localization has recently witnessed an increase in interest due to its wide range of potential services. Further, the location information is very important in many applications, such as the Internet of Things, logistics, library management and so on. Hence, different technologies and techniques have been proposed in the literature for indoor localization systems. Most of these systems present the disadvantages of a poor performance, low accuracy and high cost. However, thanks to its low cost, high accuracy and non-line-of-sight detection, radio frequency identification (RFID)-based localization has increasingly become the most used technology for indoor localization. In this paper, we propose an innovative approach based on the multiple input single output (MISO) protocol to improve the accuracy of a low-cost RFID localization system. Whereas most traditional systems use a single tag for localization, the proposed architecture encourages the use of a group of RFID tags named as a constellation. According to experimental results and based on the signals’ diversity, the location accuracy is improved to get an estimated position error of 81 cm at the cumulative distribution function of 90%.
Indoor localization is one of the most important topics in wireless navigation systems. The large number of applications that rely on indoor positioning makes advancements in this field important. Fingerprinting is a popular technique that is widely adopted and induces many important localization approaches. Recently, fingerprinting based on mobile robots has received increasing attention. This work focuses on presenting a simple, cost-effective and accurate auto-fingerprinting method for an indoor localization system based on Radio Frequency Identification (RFID) technology and using a two-wheeled robot. With this objective, an assessment of the robot’s navigation is performed in order to investigate its displacement errors and elaborate the required corrections. The latter are integrated in our proposed localization system, which is divided into two stages. From there, the auto-fingerprinting method is implemented while modeling the tag-reader link by the Dual One Slope with Second Order propagation Model (DOSSOM) for environmental calibration, within the offline stage. During the online stage, the robot’s position is estimated by applying DOSSOM followed by multilateration. Experimental localization results show that the proposed method provides a positioning error of 1.22 m at the cumulative distribution function of 90%, while operating with only four RFID active tags and an architecture with reduced complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.