Chemokines are the largest family of cytokines in human immunophysiology. These proteins are defined by four invariant cysteines and are categorized based on the sequence around the first two cysteines, which leads to two major and two minor subfamilies. Chemokines function by activating specific G protein-coupled receptors, which results in, among other functions, the migration of inflammatory and noninflammatory cells to the appropriate tissues or compartments within tissues. Some of these proteins and receptors have been implicated or shown to be involved in inflammation, autoimmune diseases, and infection by HIV-1. The three-dimensional structure of each monomer is virtually identical, but the quaternary structure of chemokines is different for each subfamily. Structure-function studies reveal several regions of chemokines to be involved in function, with the N-terminal region playing a dominant role. A number of proteins and small-molecule antagonists have been identified that inhibit chemokine activities. In this review, we discuss aspects of the structure, function, and inhibition of chemokines.
Purpose: Androgen receptor (AR)-targeting prostate cancer drugs, which are predominantly competitive ligand-binding domain (LBD)-binding antagonists, are inactivated by common resistance mechanisms. It is important to develop next-generation mechanistically distinct drugs to treat castration-and drug-resistant prostate cancers.Experimental Design: Second-generation AR pan antagonist UT-34 was selected from a library of compounds and tested in competitive AR binding and transactivation assays. UT-34 was tested using biophysical methods for binding to the AR activation function-1 (AF-1) domain. Western blot, gene expression, and proliferation assays were performed in various AR-positive enzalutamidesensitive and -resistant prostate cancer cell lines. Pharmacokinetic and xenograft studies were performed in immunocompromised rats and mice.Results: UT-34 inhibits the wild-type and LBD-mutant ARs comparably and inhibits the in vitro proliferation and in vivo growth of enzalutamide-sensitive and -resistant prostate cancer xenografts. In preclinical models, UT-34 induced the regression of enzalutamide-resistant tumors at doses when the AR is degraded; but, at lower doses, when the AR is just antagonized, it inhibits, without shrinking, the tumors. This indicates that degradation might be a prerequisite for tumor regression. Mechanistically, UT-34 promotes a conformation that is distinct from the LBD-binding competitive antagonist enzalutamide and degrades the AR through the ubiquitin proteasome mechanism. UT-34 has a broad safety margin and exhibits no cross-reactivity with Gprotein-coupled receptor kinase and nuclear receptor family members.Conclusions: Collectively, UT-34 exhibits the properties necessary for a next-generation prostate cancer drug.
The nuclear receptor CAR is a xenobiotic responsive transcription factor that plays a central role in the clearance of drugs and bilirubin while promoting cocaine and acetaminophen toxicity. In addition, CAR has established a "reverse" paradigm of nuclear receptor action where the receptor is active in the absence of ligand and inactive when bound to inverse agonists. We now report the crystal structure of murine CAR bound to the inverse agonist androstenol. Androstenol binds within the ligand binding pocket, but unlike many nuclear receptor ligands, it makes no contacts with helix H12/AF2. The transition from constitutive to basal activity (androstenol bound) appears to be associated with a ligand-induced kink between helices H10 and H11. This disrupts the previously predicted salt bridge that locks H12 in the transcriptionally active conformation. This mechanism of inverse agonism is distinct from traditional nuclear receptor antagonists thereby offering a new approach to receptor modulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.