23Critical period plasticity during early postnatal life is followed by a consolidated state through the 24 maturation of interneuron networks and development of perineuronal nets (PNN) surrounding 25 parvalbumin (PV) interneurons. However, critical period-like plasticity can be induced in the adult 26 brain (iPlasticity). Over a shorter time scale, PV interneurons can alternate between high and low 27 plasticity states (PV-plasticity) to regulate memory encoding and consolidation. 28 We now show that iPlasticity and PV-plasticity in the adult visual cortex are induced by the activation 29 of TrkB neurotrophin receptors in PV interneurons. Optical activation of TrkB specifically in PV 30 interneurons switches adult cortical networks into a state of elevated plasticity within minutes. The 31 activation changes PV properties characterized by ocular dominance plasticity and reduced PV and 32 PNN expression. Our results show that TrkB activity within PV interneurons is essential for iPlasticity 33 and orchestrates plasticity states within adult cortical networks. 34 35 36 37 38 39 40 41
Critical period-like plasticity (iPlasticity) can be reinstated in the adult brain by several interventions, including drugs and optogenetic modifications. We have demonstrated that a combination of iPlasticity with optimal training improves behaviors related to neuropsychiatric disorders. In this context, the activation of TrkB, a receptor for BDNF, in Parvalbumin-positive (PV+) interneurons has a pivotal role in cortical network changes. However, it is unknown if the activation of TrkB in PV+ interneurons is important for other plasticity-related behaviors, especially for learning and memory. Here, using mice with heterozygous conditional TrkB deletion in PV+ interneurons (PV-TrkB hCKO) in IntelliCage and fear erasure paradigms, we show that chronic treatment with fluoxetine, a widely prescribed antidepressant drug that is known to promote the activation of TrkB, enhances behavioral flexibility in spatial and fear memory, largely depending on the expression of the TrkB receptor in PV+ interneurons. In addition, hippocampal long-term potentiation was enhanced by chronic treatment with fluoxetine in wild-type mice, but not in PV-TrkB hCKO mice. Transcriptomic analysis of PV+ interneurons after fluoxetine treatment indicated intrinsic changes in synaptic formation and downregulation of enzymes involved in perineuronal net formation. Consistently, immunohistochemistry has shown that the fluoxetine treatment alters PV expression and reduces PNNs in PV+ interneurons, and here we show that TrkB expression in PV+ interneurons is required for these effects. Together, our results provide molecular and network mechanisms for the induction of critical period-like plasticity in adulthood.
Critical period-like plasticity (iPlasticity) can be reinstated in the adult brain by several interventions, including drugs and optogenetic modifications. We have demonstrated that a combination of iPlasticity with optimal training improves behaviors related to neuropsychiatric disorders. In this context, the activation of TrkB, a receptor for BDNF, in Parvalbumin positive (PV+) interneurons has a pivotal role in cortical network changes. However, it is unknown if the activation of TrkB in PV+ interneurons is important for other plasticity-related behaviors, especially for learning and memory. Here, using mice with heterozygous conditional TrkB deletion in PV+ interneurons (PV-TrkB hCKO) in Intellicage and fear erasure paradigms, we show that chronic treatment with fluoxetine, a widely prescribed antidepressant drug that is known to promote the activation of TrkB, enhances behavioral flexibility in spatial and fear memory, largely depending on the expression of the TrkB receptor in PV+ interneurons. In addition, hippocampal long-term potentiation (LTP) was enhanced by chronic treatment with fluoxetine in wild-type mice, but not in PV-TrkB hCKO mice. Transcriptomic analysis of PV+ interneurons after fluoxetine treatment indicated intrinsic changes in synaptic formation and downregulation of enzymes involved in perineuronal net (PNN) formation. Consistently, immunohistochemistry has shown that the fluoxetine treatment alters PV expression and reduces PNNs in PV+ interneurons, and here we show that TrkB expression in PV+ interneurons is required for these effects. Together, our results provide molecular and network mechanisms for the induction of critical period-like plasticity in adulthood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.