We present a quantitative study of strain correlations in quiescent supercooled liquids and glasses. Recent two-dimensional computer simulations and experiments indicate that even supercooled liquids exhibit long-lived, long-range strain correlations. Here we investigate this issue in three dimensions via experiments on hard sphere colloids and molecular dynamics simulations of a glass forming binary Lennard Jones mixture. Both in the glassy state and in the supercooled regime, strain correlations are found to decay with a 1/r 3 power-law behavior, reminiscent of elastic fields around an inclusion. Moreover, theoretical predictions on the time dependence of the correlation amplitude are in line with the results obtained from experiments and simulations. It is argued that the size of the domain, which exhibits a cooperative strain pattern in a supercooled liquid, is determined by the product of the speed of sound with the structural relaxation time. While this length is of the order of nanometers in the normal liquid state, it grows to macroscale when approaching the glass transition.
Effect of small additive molecules on the structural relaxation of polymer melts is investigated via molecular dynamics simulations. At a constant external pressure and a fixed number concentration of added molecules, the variation of particle diameter leads to a non-monotonic change of the relaxation dynamics of the polymer melt. For non-entangled chains, this effect is rationalized in terms of an enhanced added-particle-dynamics which competes with a weaker coupling strength upon decreasing the particle size. Interestingly, cooling simulations reveal a non-monotonic effect on the glass transition temperature also for entangled chains, where the effect of additives on polymer dynamics is more intricate. This observation underlines the importance of monomer-scale packing effects on the glass transition in polymers. In view of this fact, size-adaptive thermosensitive core-shell colloids would be a promising candidates route to explore this phenomenon experimentally. arXiv:1907.11963v1 [cond-mat.soft]
In this contribution, diffusion of water, acetone, and ethanol into a polymer matrix has been studied experimentally and numerically by finite element approaches. Moreover, the present study reports an assessment of different thermomechanical conditions of the shape-memory (SM) performance, for example, stress- or strain-holding times in stress- or strain-controlled thermomechanical cycles and the effect of maximum strain. According to the results presented here, the uptake of acetone in Estane is much higher than ethanol and follows classical Fickian diffusion. Further, a series of thermomechanical measurements conducted on dry and physically (hydrolytically) aged polyether urethanes revealed that incorporation of water seems to have an appreciable impact on the shape recovery ratios which can be attributed to the additional physical crosslinks. However, no obvious difference in shape fixation of dry and physically (hydrolytically) aged samples could be recognized. Furthermore, by decreasing the strain-holding time, shape recovery improves significantly. Moreover, the shape fixity is found to be independent of holding time. The shape recovery ratio decreased dramatically with an increase in the stress-holding time.
In the present work, we study the role of programming strain (50% and 100%), end loads (0, 0.5, 1.0, and 1.5 MPa), and chemical environments (acetone, ethanol, and water) on the exploitable stroke of linear shape memory polymer (SMP) actuators made from ESTANE ETE 75DT3 (SMP-E). Dynamic mechanical thermal analysis (DMTA) shows how the uptake of solvents results in a decrease in the glass temperature of the molecular switch component of SMP-E. A novel in situ technique allows studying chemically triggered shape recovery as a function of time. It is found that the velocity of actuation decreases in the order acetone > ethanol > water, while the exploitable strokes show the inverse tendency and increases in the order water > ethanol > acetone. The results are interpreted on the basis of the underlying chemical (how solvents affect thermophysical properties) and micromechanical processes (the phenomenological spring dashpot model of Lethersich type rationalizes the behavior). The study provides initial data which can be used for micromechanical modeling of chemically triggered actuation of SMPs. The results are discussed in the light of underlying chemical and mechanical elementary processes, and areas in need of further work are highlighted.
Adding plasticizers is a well-known procedure to reduce the glass transition temperature in polymers. It has been recently shown that this effect shows a non-monotonic dependence on the size of additive molecules [The Journal of Chemical Physics 150 (2019) 024903]. In this work, we demonstrate that, as the size of the additive molecules is changed at fixed concentration, multiple extrema emerge in the dependence of the system's relaxation time on the size ratio. The effect occurs on all relevant length scales including single monomer dynamics, decay of Rouse modes and relaxation of the chain's end-to-end vector. A qualitatively similar trend is found within mode-coupling theoretical results for a binary hard-sphere (HS) mixture. An interpretation of the effect in terms of local packing efficiency and coupling between the dynamics of minority and majority species is provided. arXiv:1912.04781v1 [cond-mat.soft]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.