Experiments are presented which show that Botrytis cinerea, the cause of grey mould disease, is often present in symptomless lettuce plants as a systemic, endophytic, infection which may arise from seed. The fungus was isolated on selective media from surface-sterilised sections of roots, stem pieces and leaf discs from symptomless plants grown in a conventional glasshouse and in a spore-free air-flow provided by an isolation propagator. The presence of B. cinerea was confirmed by immuno-labelling the tissues with the Botrytis-specific monoclonal antibody BC-12.CA4. As plants grew, infection spread from the roots to stems and leaves. Surface-sterilisation of seeds reduced the number of infected symptomless plants. Artificial infection of seedlings with dry conidia increased the rate of infection in some experiments. Selected isolates were genetically finger-printed using microsatellite loci. This confirmed systemic spread of the inoculating isolates but showed that other isolates were also present and that single plants hosted multiple isolates. This shows that B. cinerea commonly grows in lettuce plants as an endophyte, as has already been shown for Primula. If true for other hosts, the endophytic phase may be as important a component of the species population as the aggressive necrotrophic phase.
Kersting's groundnut (Macrotyloma geocarpum Harms) is a neglected, endangered food and medicinal legume in Africa. Efforts to harness the benefits of the legume-rhizobia symbiosis have focused on few major legumes to the neglect of underutilized ones such as Kersting's groundnut. This study assessed plant growth, N-fixed and grain yield of five Kersting's groundnut landraces in response to inoculation with Bradyrhizobium strain CB756 at two locations in the Northern Region of Ghana. The transferability of cowpea-derived Simple Sequence Repeat (SSR) markers to Kersting's groundnut was also assessed. The symbiotic results revealed significant variation in nodulation, shoot biomass, δ15N, percent N derived from fixation, amount of N-fixed and soil N uptake. The cross-taxa SSR primers revealed monomorphic bands with sizes within the expected range in all the Kersting's groundnut landraces. The results of the aligned nucleotide sequences revealed marked genetic variability among the landraces. Kersting's groundnut was found to be a low N2-fixer, with 28–45% of its N derived from fixation at Nyankpala and 15–29% at Savelugu. Nitrogen contribution was 28–50 kg N-fixed·ha−1 at Nyankpala, and 12–32 kg N-fixed·ha−1 at Savelugu. Uninoculated plants of the Kersting's groundnut landraces Puffeun, Dowie, Sigiri and Boli, respectively, contributed 22, 16, 13, and 15 kg N-fixed·ha−1 from symbiosis at Savelugu as opposed to 89, 82, 69, and 89 kg N·ha−1 from soil. Landrace Puffeun was highly compatible with the introduced strain CB756 if based on δ15N and %Ndfa values, while Dowie, Funsi and Boli showed greater compatibility with native rhizobia in Ghanaian soils. The unimproved Kersting's groundnut in association with soil microsymbionts could produce grain yield of 1,137–1,556 kg ha−1 at Nyankpala, and 921–1,192 kg ha−1 at Savelugu. These findings suggest the need for further work to improve the efficiency of the Kersting's groundnut-rhizobia symbiosis for increased grain yield and resource-use efficiency in cropping systems.
Management of root-knot nematode (Meloidogyne spp.) on sweet pepper (Capsicum annuum L.) with moringa (Moringa oleifera Lam.) leaf powder A major constraint facing sweet pepper production is infestation by nematodes leading to reduced yields. Field studies were conducted during the 2012 cropping season at the Experimental Farms of the University for Development Studies, Nyankpala, Northern region, Ghana, to determine efficacy of various levels of moringa leaf powder for the control of root-knot nematodes in sweet pepper (Capsicum annuum L.) in the savanna ecology of Ghana. Treatments consisted of three levels of moringa leaf powder (40, 60 and 80 g/L) per plot and 0 g/L (control). The experiment was laid out in a randomised complete block design with each treatment replicated four times. The infestations of root-knot nematodes were significantly lower in the moringa leaf powdertreated plots than the control. Although significant differences were not observed in all the parameters evaluated among the moringa leaf powder treatments, sweet pepper plants treated with 80 g/L of moringa leaf powder per plot recorded the highest mean value of plant height, number of leaves, number of fruits per plant, fruit weight per plant total yield per plot and the thickest plant girth. Similarly, the sweet pepper plants treated with 80 g/L of moringa leaf powder had the lowest infection index (root gall) and nematode population. Application of moringa leaf powder at 40, 60 and 80 g/L increased sweet pepper yield and decreased nematode population confirming their potential in management of root-knot nematodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.